Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Space: General
Published Diamonds are a chip's best friend



New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements. Researchers have now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor. They broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption.
Published Researchers use Hawk supercomputer and lean into imperfection to improve solar cell efficiency



Solar energy is one of the most promising, widely adopted renewable energy sources, but the solar cells that convert light into electricity remains a challenge. Scientists have turned to the High-Performance Computing Center Stuttgart to understand how strategically designing imperfections in the system could lead to more efficient energy conversion.
Published Imaging grain boundaries that impede lithium-ion migration in solid-state batteries



A research team has developed a new technique to image grain boundaries obstructing lithium-ion migration in solid-state batteries -- a promising type of next-generation battery.
Published AI-driven lab speeds catalysis research



Researchers have developed a 'self-driving' lab that uses artificial intelligence (AI) and automated systems to provide in-depth analyses of catalytic reactions used in chemical research and manufacturing. The new tool, called Fast-Cat, can provide more information in five days than is possible in six months of conventional testing.
Published A new theoretical development clarifies water's electronic structure



Scientists have decoded the electronic structure of water, opening up new perspectives for technological and environmental applications.
Published The mutual neutralization of hydronium and hydroxide



Researchers have been able to directly visualize the neutral products of the mutual neutralization of hydronium and hydroxide, and report three different product channels: two channels were attributed to a predominant electron-transfer mechanism, and a smaller channel was associated with proton transfer. The two-beam collision experiment is an important step toward understanding the quantum dynamics of this fundamental reaction.
Published Metal scar found on cannibal star



When a star like our Sun reaches the end of its life, it can ingest the surrounding planets and asteroids that were born with it. Now, researchers have found a unique signature of this process for the first time -- a scar imprinted on the surface of a white dwarf star.
Published Chemists synthesize unique anticancer molecules using novel approach



Nearly 30 years ago, scientists discovered a unique class of anticancer molecules in a family of bryozoans, a phylum of marine invertebrates found in tropical waters. The chemical structures of these molecules, which consist of a dense, highly complex knot of oxidized rings and nitrogen atoms, has attracted the interest of organic chemists worldwide, who aimed to recreate these structures from scratch in the laboratory. However, despite considerable effort, it has remained an elusive task. Until now, that is. A team of chemists has succeeded in synthesizing eight of the compounds for the first time using an approach that combines inventive chemical strategy with the latest technology in small molecule structure determination.
Published Webb finds evidence for neutron star at heart of young supernova remnant



NASA's James Webb Space Telescope has found the best evidence yet for emission from a neutron star at the site of a recently observed supernova. The supernova, known as SN 1987A, was a core-collapse supernova, meaning the compacted remains at its core formed either a neutron star or a black hole. Evidence for such a compact object has long been sought, and while indirect evidence for the presence of a neutron star has previously been found, this is the first time that the effects of high-energy emission from the probable young neutron star have been detected.
Published A new beginning: The search for more temperate Tatooines



Luke Skywalker's childhood might have been slightly less harsh if he'd grown up on a more temperate Tatooine -- like the ones identified in a new study. According to the study's authors, there are more climate-friendly planets in binary star systems -- in other words, those with two suns -- than previously known. And, they say, it may be a sign that, at least in some ways, the universe leans in the direction of orderly alignment rather than chaotic misalignment.
Published Brightest and fastest-growing: Astronomers identify record-breaking quasar



Astronomers have characterized a bright quasar, finding it to be not only the brightest of its kind, but also the most luminous object ever observed. Quasars are the bright cores of distant galaxies and they are powered by supermassive black holes. The black hole in this record-breaking quasar is growing in mass by the equivalent of one Sun per day, making it the fastest-growing black hole to date.
Published A new vibrant blue pottery pigment with less cobalt



Whether ultramarine, cerulean, Egyptian or cobalt, blue pigments have colored artworks for centuries. Now, seemingly out of the blue, scientists have discovered a new blue pigment that uses less cobalt but still maintains a brilliant shine. Though something like this might only happen once in a blue moon, the cobalt-doped barium aluminosilicate colorant withstands the high temperatures found in a kiln and provides a bright color to glazed tiles.
Published Three years later, search for life on Mars continues



Scientists suspect Mars once had long-lived rivers, lakes and streams. Today, water on Mars is found in ice at the poles and trapped below the Martian surface. Researchers now reveal that Mars also may have had hydrothermal systems based on the hydrated magnesium sulfate the rover identified in the volcanic rocks.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published New realistic computer model will help robots collect Moon dust



A new computer model mimics Moon dust so well that it could lead to smoother and safer Lunar robot teleoperations.
Published Little groundwater recharge in ancient Mars aquifer, according to new models



Mars was once a wet world. The geological record of the Red Planet shows evidence for water flowing on the surface -- from river deltas to valleys carved by massive flash floods. But a new study shows that no matter how much rainfall fell on the surface of ancient Mars, very little of it seeped into an aquifer in the planet's southern highlands.
Published An environmentally friendly way to turn seafood waste into value-added products



Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published Black hole at center of the Milky Way resembles a football



The supermassive black hole in the center of the Milky Way is spinning so quickly it is warping the spacetime surrounding it into a shape that can look like a football, according to a new study. That football shape suggests the black hole is spinning at a substantial speed, which researchers estimated to be about 60% of its potential limit.
Published It's the spin that makes the difference



Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.