Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Space: General
Published Planet-forming disks around very low-mass stars are different



Using the James Webb Space Telescope, a team of astronomers studied the properties of a planet-forming disk around a young and very low-mass star. The results reveal the richest hydrocarbon composition seen to date in a protoplanetary disk, including the first extrasolar detection of ethane and a relatively low abundance of oxygen-bearing species. By including previous similar detections, this finding confirms a trend of disks around very low-mass stars to be chemically distinct from those around more massive stars like the Sun, influencing the atmospheres of planets forming there.
Published Olivine unlocks the secrets of the Moon's interior



New partitioning coefficients of first-transition row elements, Ga and Ge between olivine and silicate melt have been reported. New high-temperature experiments have investigated the effects of oxygen fugacity and iron content on these partition coefficients. This newly compiled dataset offers insights into interpreting trace elements found in olivine phenocrysts within lunar basalts, shedding light on the deep interior composition of the Moon.
Published Novel method of detecting high-frequency gravitational waves in planetary magnetospheres



A groundbreaking method of detecting high-frequency gravitational waves (HFGWs) has been proposed. The team's innovative approach may enable the successful detection of HFGWs by utilizing existing and technologically feasible astronomical telescopes in planetary magnetosphere, opening up new possibilities for studying the early universe and violent cosmic events in an effective and technically viable way.
Published Scientists detect slowest-spinning radio emitting neutron star ever recorded



Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate -- slower than any of the more than 3,000 radio emitting neutron stars measured to date.
Published 'Weird' new planet retained atmosphere despite nearby star's relentless radiation



A rare exoplanet that should have been stripped down to bare rock by its nearby host star's intense radiation somehow grew a puffy atmosphere instead -- the latest in a string of discoveries forcing scientists to rethink theories about how planets age and die in extreme environments. Nicknamed 'Phoenix' for its ability to survive its red giant star's radiant energy discovered planet illustrates the vast diversity of solar systems and the complexity of planetary evolution -- especially at the end of stars' lives.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Researchers call for strengthening sustainability regulations in laws governing space exploration



Researchers call for strengthening existing planetary protection policies beyond the space surrounding Earth to include requirements for preserving the Lunar and Martian environments.
Published Martian meteorites deliver a trove of information on Red Planet's structure



Mars has a distinct structure in its mantle and crust with discernible reservoirs, and this is known thanks to meteorites that scientists have analyzed. These results are important for understanding not only how Mars formed and evolved, but also for providing precise data that can inform recent NASA missions like Insight and Perseverance and the Mars Sample Return.
Published Glimpses of a volcanic world: New telescope images of Jupiter's moon Io rival those from spacecraft



Combining a new imaging instrument with the powerful adaptive optics capabilities of the Large Binocular Telescope, astronomers have captured a volcanic event on Jupiter's moon Io at a resolution never before achieved with Earth-based observations.
Published Medium and mighty: Intermediate-mass black holes can survive in globular clusters



New research demonstrated a possible formation mechanism of intermediate-mass black holes in globular clusters, star clusters that could contain tens of thousands or even millions of tightly packed stars. The first ever star-by-star massive cluster-formation simulations revealed that sufficiently dense molecular clouds, the 'birthing nests' of star clusters, can give birth to very massive stars that evolve into intermediate-mass black holes.
Published NASA's James Webb Space Telescope finds most distant known galaxy



Over the last two years, scientists have used NASA's James Webb Space Telescope to explore what astronomers refer to as Cosmic Dawn -- the period in the first few hundred million years after the big bang where the first galaxies were born.
Published Graphene gets cleaned up



Engineers establish the link between oxygen and graphene quality and present an oxygen-free chemical vapor deposition method (OF-CVD) that can reproducibly create high-quality samples for large-scale production. The graphene they synthesized with their new method proved nearly identical to exfoliated samples and was capable of producing the fractional quantum Hall effect.
Published Moon orbiting 'dinky' asteroid is actually two tiny moons stuck together



The moon orbiting the asteroid Dinkinesh is actually two tiny moons stuck together. Collectively called 'Selam,' the two moonlets bring new insight into the complex processes behind planetary formation and evolution.
Published The case of the missing black holes



Researchers have applied the well-understood and highly verified quantum field theory, usually applied to the study of the very small, to a new target, the early universe. Their exploration led to the conclusion that there ought to be far fewer miniature black holes than most models suggest, though observations to confirm this should soon be possible. The specific kind of black hole in question could be a contender for dark matter.
Published New technique offers more precise maps of the Moon's surface



A new study may help redefine how scientists map the surface of the Moon, making the process more streamlined and precise than ever before.
Published Mystery of 'slow' solar wind unveiled by Solar Orbiter mission



Scientists have come a step closer to identifying the mysterious origins of the 'slow' solar wind, using data collected during the Solar Orbiter spacecraft's first close journey to the Sun.
Published Birth of universe's earliest galaxies observed for first time



Researchers have now seen the formation of three of the earliest galaxies in the universe, more than 13 billion years ago. The sensational discovery contributes important knowledge about the universe.
Published Intriguing nearby world sized between Earth, Venus



Astronomers have discovered a planet between the sizes of Earth and Venus only 40 light-years away.
Published Planet hunters unveil massive catalog of strange worlds



While thousands of planets have been discovered around other stars, relatively little is known about them. A NASA catalog featuring 126 exotic, newly discovered worlds includes detailed measurements that allow for comparisons with our own solar system.
Published First pictures from Euclid satellite reveal billions of orphan stars



The first scientific pictures from the Euclid satellite mission have revealed more than 1,500 billion orphan stars scattered throughout the Perseus cluster of galaxies.