Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Space: General
Published Galaxies in dense environments tend to be larger, settling one cosmic question and raising others



A new study has found galaxies with more neighbors tend to be larger than their counterparts that have a similar shape and mass, but reside in less dense environments. The team, which used a machine-learning algorithm to analyze millions of galaxies, reports that galaxies found in denser regions of the universe are as much as 25% larger than isolated galaxies. The findings resolve a long-standing debate among astrophysicists over the relationship between a galaxy's size and its environment, but also raise new questions about how galaxies form and evolve over billions of years.
Published Exploring the structures of xenon-containing crystallites



Noble gases have a reputation for being unreactive, inert elements, but more than 60 years ago Neil Bartlett demonstrated the first way to bond xenon. He created XePtF6, an orange-yellow solid. Because it's difficult to grow sufficiently large crystals that contain noble gases, some of their structures -- and therefore functions -- remain elusive. Now, researchers have successfully examined tiny crystallites of noble gas compounds. They report structures of multiple xenon compounds.
Published Rocks collected on Mars hold key to water and perhaps life on the planet: Bring them back to Earth



Between July and November of 2022, NASA's Perseverance rover collected seven samples of sediment from an ancient alluvial fan in Jezero crater. While onboard analysis gave researchers some information about their origins, only detailed analysis on Earth can retrieve evidence of when water flowed on Mars and whether life arose there. Geophysicists had hoped to get these samples back by 2033, but NASA's sample return mission may be delayed beyond that date.
Published Rocks from Mars' Jezero Crater, which likely predate life on Earth, contain signs of water



Scientists report that rock samples from Mars' Jezero Crater contain minerals that are typically formed in water. While the presence of organic matter is inconclusive, the rocks could be scientists' best chance at finding remnants of ancient Martian life.
Published SwRI-led team finds evidence of hydration on Asteroid Psyche



Using data from NASA's James Webb Space Telescope, astronomers have confirmed hydroxyl molecules on the surface of the metallic asteroid Psyche. The presence of hydrated minerals suggests a complex history for Psyche, important context for the NASA spacecraft en route to this interesting asteroid orbiting the Sun between Mars and Jupiter.
Published Scientists achieve more than 98% efficiency removing nanoplastics from water



Linked to cardiovascular and respiratory diseases in people, nanoplastics continue to build up, largely unnoticed, in the world's bodies of water. The challenge remains to develop a cost-effective solution to get rid of nanoplastics while leaving clean water behind. That's where Mizzou comes in. Recently, researchers created a new liquid-based solution that eliminates more than 98% of these microscopic plastic particles from water.
Published Measuring Martian winds with sound



Martian landers have been able capture measurements of wind speeds -- some gauging the cooling rate of heated materials when winds blow over them, others using cameras to image 'tell-tales' that blow in the wind -- but there's still room for improvement. Researchers now demonstrate a novel sonic anemometric system featuring a pair of narrow-band piezoelectric transducers to measure the travel time of sound pulses through Martian air. The study accounted for variables including transducer diffraction effects and wind direction.
Published Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy



Scientists have made a groundbreaking discovery in the field of nanotechnology. They have developed a novel microscopy method that allows for the unprecedented visualization of nanostructures and their optical properties.
Published MIT researchers use large language models to flag problems in complex systems



Researchers used large language models to efficiently detect anomalies in time-series data, without the need for costly and cumbersome training steps. This method could someday help alert technicians to potential problems in equipment like wind turbines or satellites.
Published Engineers make tunable, shape-changing metamaterial inspired by vintage toys



Common push puppet toys in the shapes of animals and popular figures can move or collapse with the push of a button at the bottom of the toys' base. Now, a team of engineers has created a new class of tunable dynamic material that mimics the inner workings of push puppets, with applications for soft robotics, reconfigurable architectures and space engineering.
Published Scientists find oceans of water on Mars: It's just too deep to tap



Quakes and meteor impacts on Mars generate seismic waves that can help map the interior. A new study analyzed seismic waves detected by the Insight lander and concludes that 11-20 kilometers beneath the surface, a zone of pores and fractures is filled with liquid water -- more than was thought to fill Mars' surface oceans before they disappeared 3 billion years ago. Though too deep to drill, the reservoir is a possible refuge for life.
Published Why carbon nanotubes fluoresce when they bind to certain molecules



Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.
Published Innovative study unveils a new path in green chemistry



Researchers have introduced a new advancement in the fight against climate change. Their study showcases a novel method for understanding the mechanisms of carbon dioxide re-utilization leading to fuels and chemicals. This work paves the road for the further optimization of this catalytic process driven by renewable electricity.
Published Precise stirring conditions key to optimizing nanostructure synthesis



Stirring allows for homogenization and efficient gas exchange -- this fact has been known for decades. Controlling the stirring rate during the nanocluster synthesis is pivotal in achieving nanostructures with well-defined sizes, structures, optical properties, and stability.
Published International Space Station crew carries out archeological survey in space



An archaeological strategy adapted for space used daily photos to reveal how astronauts actually use areas aboard the International Space Station -- and how this differs from intended uses.
Published Findings from first archaeology project in space



The first-ever archeological survey in space has provided new insights into how astronauts use and adapt their living space on the International Space Station, which could influence the design of new space stations after the ISS is decommissioned.
Published Scientists lay out revolutionary method to warm Mars



Ever since we learned that the surface of planet Mars is cold and dead, people have wondered if there is a way to make it friendlier to life. The newly proposed method is over 5,000 times more efficient than previous schemes to globally warm Mars, representing a significant leap forward in our ability to modify the Martian environment.
Published X-ray imagery of vibrating diamond opens avenues for quantum sensing



Scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond's strain and the behavior of the quantum information hosted within.
Published Soft gold enables connections between nerves and electronics



Gold does not readily lend itself to being turned into long, thin threads. But researchers have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.
Published Concept for efficiency-enhanced noble-metal catalysts



The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.