Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Computing, Space: General
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Finding new physics in debris from colliding neutron stars



Neutron star mergers are a treasure trove for new physics signals, with implications for determining the true nature of dark matter, according to physicists.
Published Astronomers spot oldest 'dead' galaxy yet observed



A galaxy that suddenly stopped forming new stars more than 13 billion years ago has been observed by astronomers. Using the James Webb Space Telescope, astronomers have spotted a 'dead' galaxy when the universe was just 700 million years old, the oldest such galaxy ever observed.
Published Discovery tests theory on cooling of white dwarf stars



Open any astronomy textbook to the section on white dwarf stars and you'll likely learn that they are 'dead stars' that continuously cool down over time. Astronomers are challenging this theory after discovering a population of white dwarf stars that stopped cooling for more than eight billion years.
Published New method measures the 3D position of individual atoms



Since more than a decade it has been possible for physicists to accurately measure the location of individual atoms to a precision of smaller than one thousandth of a millimeter using a special type of microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom -- i.e., the distance between the atom and the microscope objective -- is lacking. A new method has now been developed that can determine all three spatial coordinates of an atom with one single image.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published Space tourism? Cosmic radiation exposure



Space weather experts are urging regulators and space tourism innovators to work together to protect their passengers and crews from the risks of space weather radiation exposure.
Published Groundbreaking survey reveals secrets of planet birth around dozens of stars



A team of astronomers has shed new light on the fascinating and complex process of planet formation. The research brings together observations of more than 80 young stars that might have planets forming around them, providing astronomers with a wealth of data and unique insights into how planets arise in different regions of our galaxy.
Published What makes black holes grow and new stars form? Machine learning helps solve the mystery



It takes more than a galaxy merger to make a black hole grow and new stars form: machine learning shows cold gas is needed too to initiate rapid growth -- new research finds.
Published Juno spacecraft measures oxygen production on Jupiter's moon, Europa



NASA's Juno spacecraft has directly measured charged oxygen and hydrogen molecules from the atmosphere of one of Jupiter's largest moons, Europa. These observations provide key constraints on the potential oxygenation of its subsurface ocean.
Published JWST captures the end of planet formation



The James Webb Space Telescope is helping scientists uncover how planets form by advancing understanding of their birthplaces and the circumstellar disks surrounding young stars. Scientists have imaged winds from an old planet-forming disk (still very young relative to the Sun) which is actively dispersing its gas content. Knowing when the gas disperses is important as it constrains the time left for nascent planets to consume the gas from their surroundings.
Published Webb unlocks secrets of one of the most distant galaxies ever seen



Looking deeply into space and time, astronomers have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old universe was only about 430 million years old.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.
Published Study determines the original orientations of rocks drilled on Mars



Geologists determined the original orientation of many of the Mars bedrock samples collected by the Perseverance rover. The findings can give scientists clues to the conditions in which the rocks originally formed.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published New insights on how galaxies are formed



Astronomers can use supercomputers to simulate the formation of galaxies from the Big Bang 13.8 billion years ago to the present day. But there are a number of sources of error. An international research team has spent a hundred million computer hours over eight years trying to correct these.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Ultraviolet radiation from massive stars shapes planetary systems



Up to a certain point, very luminous stars can have a positive effect on the formation of planets, but from that point on the radiation they emit can cause the material in protoplanetary discs to disperse.