Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Computing, Space: General
Published Origin of intense light in supermassive black holes and tidal disruption events revealed



A new study is a significant breakthrough in understanding Tidal Disruption Events (TDEs) involving supermassive black holes. The new simulations accurately replicate the entire sequence of a TDE from stellar disruption to the peak luminosity of the resulting flare.
Published Astronomers detect oldest black hole ever observed



Researchers have discovered the oldest black hole ever observed, dating from the dawn of the universe, and found that it is 'eating' its host galaxy to death.
Published Chemists create a 2D heavy fermion



Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published The metalens meets the stars



Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.
Published Long live the graphene valley state



Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.
Published Study delivers detailed photos of galaxies' inner structures



High-resolution images captured by the James Webb Space Telescope are offering powerful insights into the complex dust patterns of nearby star-forming galaxies.
Published Space solar power project ends first in-space mission with successes and lessons



A 10-month mission demonstrated three elements of the plan to beam solar power from space to Earth.
Published Astronomers produce most sensitive radio image ever of ancient star cluster



Astronomers have created the most sensitive radio image ever of a globular cluster, an ancient ball of tightly-packed stars.
Published Discovery changes understanding of water's history on the Moon



New research shows the early lunar crust which makes up the surface of the Moon was considerably enriched in water more than 4 billion years ago, counter to previously held understanding.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Solid-state qubits: Forget about being clean, embrace mess



New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.
Published Research sheds new light on Moon rock formation solving major puzzle in lunar geology



New research has cracked a vital process in the creation of a unique rock type from the Moon. The discovery explains its signature composition and very presence on the lunar surface at all, unraveling a mystery which has long-eluded scientists.
Published Earth-sized planet discovered in 'our solar backyard'



Astronomers have discovered a planet closer and younger than any other Earth-sized world yet identified. It's a remarkably hot world whose proximity to our own planet and to a star like our sun mark it as a unique opportunity to study how planets evolve.
Published NASA scientists discover a novel galactic 'fossil'



Researchers at NASA's Goddard Space Flight Center have discovered X-ray activity that sheds light on the evolution of galaxies.
Published Close encounters of the supermassive black hole kind



Astrophysicists have confirmed the accuracy of an analytical model that can unlock key information about supermassive black holes and the stars they engulf.
Published Our surprising magnetic galaxy



A team of astronomers has created the first-ever map of magnetic field structures within a spiral arm of our Milky Way galaxy. Previous studies on galactic magnetic fields only gave a very general picture, but the new study reveals that magnetic fields in the spiral arms of our galaxy break away from this general picture significantly and are tilted away from the galactic average by a high degree. The findings suggest magnetic fields strongly impact star-forming regions which means they played a part in the creation of our own solar system.
Published Surprise gamma-ray feature beyond our galaxy



Astronomers analyzing 13 years of data from NASA's Fermi Gamma-ray Space Telescope have found an unexpected and as yet unexplained feature outside of our galaxy.
Published Astronomers make rare exoplanet discovery, and a giant leap in detecting Earth-like bodies



Astronomers have made the rare discovery of a small, cold exoplanet and its massive outer companion -- shedding light on the formation of planets like Earth.
Published Potential solvents identified for building on moon and Mars



Researchers have taken the first steps toward finding liquid solvents that may someday help extract critical building materials from lunar and Martian-rock dust, an important piece in making long-term space travel possible. Using machine learning and computational modeling, researchers have found about half a dozen good candidates for solvents that can extract materials on the moon and Mars usable in 3D printing. The powerful solvents, called ionic liquids, are salts that are in a liquid state.