Showing 20 articles starting at article 481

< Previous 20 articles        Next 20 articles >

Categories: Physics: Quantum Computing, Space: General

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First direct imaging of small noble gas clusters at room temperature      (via sciencedaily.com)     Original source 

Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

NASA's Webb discovers dusty 'cat's tail' in Beta Pictoris System      (via sciencedaily.com)     Original source 

Beta Pictoris, a young planetary system located just 63 light-years away, continues to intrigue scientists even after decades of in-depth study. It possesses the first dust disk imaged around another star -- a disk of debris produced by collisions between asteroids, comets, and planetesimals. Observations from NASA's Hubble Space Telescope revealed a second debris disk in this system, inclined with respect to the outer disk, which was seen first. Now, a team of astronomers using NASA's James Webb Space Telescope to image the Beta Pictoris system (Beta Pic) has discovered a new, previously unseen structure.

Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Observing macroscopic quantum effects in the dark      (via sciencedaily.com)     Original source 

Be fast, avoid light, and roll through a curvy ramp: This is the recipe for a pioneering experiment proposed by theoretical physicists. An object evolving in a potential created through electrostatic or magnetic forces is expected to rapidly and reliably generate a macroscopic quantum superposition state.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

NASA's Webb finds signs of possible aurorae on isolated brown dwarf      (via sciencedaily.com)     Original source 

Astronomers have found a brown dwarf (an object more massive than Jupiter but smaller than a star) with infrared emission from methane, likely due to energy in its upper atmosphere. This is an unexpected discovery because the brown dwarf, W1935, is cold and lacks a host star; therefore, there is no obvious source for the upper atmosphere energy. The team speculates that the methane emission may be due to processes generating aurorae.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features
Published

Unlocking the secrets of a 'Hot Saturn' and its spotted star      (via sciencedaily.com)     Original source 

A team of astronomers has unraveled the enigmatic atmosphere of the exoplanet HAT-P-18 b, shedding light on its intriguing blend of gases, clouds, and even the effects of its star's activity.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

'Blob-like' home of farthest-known fast radio burst is collection of seven galaxies      (via sciencedaily.com)     Original source 

In summer 2022, astronomers detected the most powerful and most distant fast radio burst (FRB) ever observed. Now, astronomers have pinpointed the extraordinary object's birthplace -- and it's rather curious, indeed. Using images from NASA's Hubble Space Telescope, the researchers traced the FRB back to not one galaxy but a group of at least seven galaxies.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate that quantum entanglement and topology are inextricably linked      (via sciencedaily.com)     Original source 

Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Final supernova results from Dark Energy Survey offer unique insights into the expansion of the universe      (via sciencedaily.com)     Original source 

In the culmination of a decade's worth of effort, scientists analyzed an unprecedented sample of more than 1,500 supernovae classified using machine learning. They placed the strongest constraints on the expansion of the universe ever obtained with the DES supernova survey. While consistent with the current standard cosmological model, the results do not rule out a more complex theory that the density of dark energy in the universe could have varied over time.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Three iron rings in a planet-forming disk      (via sciencedaily.com)     Original source 

Astronomers have detected a three-ringed structure in the nursery of planets in the inner planet-forming disk of a young star. This configuration suggests two Jupiter-mass planets are forming in the gaps between the rings. The detailed analysis is consistent with abundant solid iron grains complementing the dust composition. As a result, the disk likely harbors metals and minerals akin to those in the Solar System's terrestrial planets. It offers a glimpse into conditions resembling the early Solar System over four billion years ago during the formation of rocky planets such as Mercury, Venus, and Earth.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Space oddity: Uncovering the origin of the universe's rare radio circles      (via sciencedaily.com)     Original source 

Astronomers believe they may have found the origin of the universe's giant odd radio circles: they are shells formed by outflowing galactic winds, possibly from massive exploding stars known as supernovae.

Offbeat: General Offbeat: Space Space: General
Published

Mysterious missing component in the clouds of Venus revealed      (via sciencedaily.com)     Original source 

Researchers may have identified the missing component in the chemistry of the Venusian clouds that would explain their color and splotchiness in the UV range, solving a long-standing mystery.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

New images reveal what Neptune and Uranus really look like      (via sciencedaily.com)     Original source 

Neptune is fondly known for being a rich blue and Uranus green -- but a new study has revealed that the two ice giants are actually far closer in color than typically thought. The correct shades of the planets have now been confirmed.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Functional semiconductor made from graphene      (via sciencedaily.com)     Original source 

Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.

Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Magnetic fields in the cosmos: Dark matter could help us discover their origin      (via sciencedaily.com)     Original source 

We don't know how magnetic fields in the cosmos formed. Now a new theoretical research tells how the invisible part of our universe could help us find out, suggesting a primordial genesis, even within a second of the Big Bang.

Engineering: Nanotechnology Environmental: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers boost signal amplification in perovskite nanosheets      (via sciencedaily.com)     Original source 

Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Space: Astronomy Space: General Space: The Solar System
Published

Is oxygen the cosmic key to alien technology?      (via sciencedaily.com)     Original source 

Astrophysicists outline the links between atmospheric oxygen and the potential rise of advanced technology on distant planets.