Showing 20 articles starting at article 601

< Previous 20 articles        Next 20 articles >

Categories: Physics: Quantum Computing, Space: General

Return to the site home page

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

Mystery resolved: Black hole feeding and feedback at the center of an active galaxy      (via sciencedaily.com)     Original source 

Almost every large galaxy has a supermassive black hole at its center. An international research team has recently observed the Circinus galaxy, which is one of the closest galaxies to the Milky Way, with high enough resolution to gain further insights into the gas flows to and from the black hole at its galactic nucleus.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Vacuum in optical cavity can change material's magnetic state without laser excitation      (via sciencedaily.com)     Original source 

Researchers in Germany and the USA have produced the first theoretical demonstration that the magnetic state of an atomically thin material, ?-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material's magnetic order from a zigzag antiferromagnet into a ferromagnet.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

Black holes are messy eaters      (via sciencedaily.com)     Original source 

New observations down to light-year scale of the gas flows around a supermassive black hole have successfully detected dense gas inflows and shown that only a small portion (about 3 percent) of the gas flowing towards the black hole is eaten by the black hole. The remainder is ejected and recycled back into the host galaxy.

Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Researchers find gravitational lensing has significant effect on cosmic birefringence      (via sciencedaily.com)     Original source 

Future missions will be able to find signatures of violating the parity-symmetry in the cosmic microwave background polarization more accurately after a pair of researchers has managed to take into account the gravitational lensing effect, reports a new study.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What a '2D' quantum superfluid feels like to the touch      (via sciencedaily.com)     Original source 

Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.

Computer Science: Quantum Computers Mathematics: Statistics Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing      (via sciencedaily.com)     Original source 

Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Exploding stars      (via sciencedaily.com)     Original source 

When massive stars or other stellar objects explode in the Earth's cosmic neighborhood, ejected debris can also reach our solar system. Traces of such events are found on Earth or the Moon and can be detected using accelerator mass spectrometry, or AMS for short.

Paleontology: General Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

'Jurassic worlds' might be easier to spot than modern Earth      (via sciencedaily.com)     Original source 

An analysis finds telescopes could better detect potential chemical signatures of life in an Earth-like exoplanet that more closely resembles the age the dinosaurs inhabited than the one we know today.

Space: Astronomy Space: Cosmology Space: General Space: Structures and Features Space: The Solar System
Published

Giant planets cast a deadly pall      (via sciencedaily.com)     Original source 

Giant gas planets can be agents of chaos, ensuring nothing lives on their Earth-like neighbors around other stars. New studies show, in some planetary systems, the giants tend to kick smaller planets out of orbit and wreak havoc on their climates.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Late not great -- imperfect timekeeping places significant limit on quantum computers      (via sciencedaily.com)     Original source 

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features
Published

The Crab Nebula seen in new light by NASA's Webb      (via sciencedaily.com)     Original source 

NASA's James Webb Space Telescope has gazed at the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus. Since the recording of this energetic event in 1054 CE by 11th-century astronomers, the Crab Nebula has continued to draw attention and additional study as scientists seek to understand the conditions, behavior, and after-effects of supernovae through thorough study of the Crab, a relatively nearby example.

Offbeat: General Offbeat: Space Physics: Optics Space: Astronomy Space: Exploration Space: General
Published

To advance space colonization, new research explores 3D printing in microgravity      (via sciencedaily.com)     Original source 

Research into how 3D printing works in a weightless environment aims to support long-term exploration and habitation on spaceships, the moon or Mars.

Energy: Alternative Fuels Environmental: General Geoscience: Earth Science Geoscience: Geology Geoscience: Geomagnetic Storms Geoscience: Severe Weather Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

The importance of the Earth's atmosphere in creating the large storms that affect satellite communications      (via sciencedaily.com)     Original source 

Large geomagnetic storms disrupt radio signals and GPS. Now, researchers have identified the previous underestimated role of the ionosphere, a region of Earth's upper atmosphere that contains a high concentration of ions and free electrons, in determining how such storms develop. Understanding the interactions that cause large geomagnetic storms is important because they can disrupt radio signals and GPS. Their findings may help predict storms with the greatest potential consequences.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling waves in magnets with superconductors for the first time      (via sciencedaily.com)     Original source 

Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A superatomic semiconductor sets a speed record      (via sciencedaily.com)     Original source 

The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2. 

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

Uranus aurora discovery offers clues to habitable icy worlds      (via sciencedaily.com)     Original source 

Astronomers confirm the existence of an infrared (IR) aurora on Uranus. This could help astronomers identify exoplanets that might support life, a large number of which are icy worlds.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists simulate interacting quasiparticles in ultracold quantum gas      (via sciencedaily.com)     Original source 

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.