Showing 20 articles starting at article 1
Categories: Geoscience: Geology, Space: General
Published Two epicenters led to Japan's violent Noto earthquake on New Year's Day



The 7.5- magnitude earthquake beneath Japan's Noto Peninsula on Jan. 1, 2024, occurred when a 'dual-initiation mechanism' applied enough energy from two different locations to break through a fault barrier -- an area that locks two sides of a fault in place and absorbs the energy of fault movement, slowing it down or stopping it altogether.
Published NASA's DART impact permanently changed the shape and orbit of asteroid moon



A new study provides insights on the geophysics behind asteroid formation and evolution.
Published Meteor showers shed light on where comets formed in the early solar system



Researchers studying meteor showers have found that not all comets crumble the same way when they approach the Sun. In a new study, they ascribe the differences to the conditions in the protoplanetary disk where comets formed 4.5 billion years ago.
Published Extraterrestrial chemistry with earthbound possibilities



Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.
Published New study reveals devastating power and colossal extent of a giant underwater avalanche off the Moroccan coast



New research has revealed how an underwater avalanche grew more than 100 times in size causing a massive trail of destruction as it traveled 2000km across the Atlantic Ocean seafloor off the North West coast of Africa. Researchers provide an unprecedented insight into the scale, force and impact of one of nature's mysterious phenomena, underwater avalanches.
Published New heaviest exotic antimatter nucleus



Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.
Published New view of North Star reveals spotted surface



High-resolution images show large spots on the surface of Polaris.
Published Explanation found for X-ray radiation from black holes



Researchers have succeeded in something that has been pursued since the 1970s: explaining the X-ray radiation from the black hole surroundings. The radiation originates from the combined effect of the chaotic movements of magnetic fields and turbulent plasma gas.
Published Fossil hotspots in Africa obscure a more complete picture of human evolution



A new study shows how the mismatch between where fossils are preserved and where humans likely lived may influence our understanding of early human evolution.
Published Spectacular increase in the deuterium/hydrogen ratio in Venus' atmosphere



Our understanding of Venus' water history and the potential that it was once habitable in the past is being challenged by recent observations.
Published Preservation of organic carbon in the ocean floor



The preservation of organic carbon in marine sediments has long been a key question remaining unclear in understanding the long-term carbon cycling on Earth. Recently, scientists have gained new insights into the dynamic cycling of iron-bound organic carbon in subseafloor sediments.
Published Decoding mysterious seismic signals



Geophysicists find link between seismic waves called PKP precursors and anomalies in Earth's mantle that are associated with hotspots associated with volcanism on the surface.
Published Tracking down the asteroid that sealed the fate of the dinosaurs



The asteroid that led to the extinction of the dinosaurs 66 million years ago probably came from the outer solar system.
Published Right on schedule: Physicists use modeling to forecast a black hole's feeding patterns with precision



The dramatic dimming of a light source ~ 870 million light years away from Earth confirms the accuracy of a detailed model.
Published Scottish and Irish rocks confirmed as rare record of 'snowball Earth'



The study found that the Port Askaig Formation, composed of layers of rock up to 1.1 km thick, was likely laid down between 662 to 720 million years ago during the Sturtian glaciation -- the first of two global freezes thought to have triggered the development of complex, multicellular life.
Published Researchers unveil mysteries of ancient Earth



A team of researchers has made strides in understanding the formation of massif-type anorthosites, enigmatic rocks that only formed during the middle part of Earth's history. These plagioclase-rich igneous rock formations, which can cover areas as large as 42,000 square kilometers and host titanium ore deposits, have puzzled scientists for decades due to conflicting theories about their origins.
Published Engineers conduct first in-orbit test of 'swarm' satellite autonomous navigation



With 2D cameras and space robotics algorithms, astronautics engineers have created a navigation system able to manage multiple satellites using visual data only. They just tested it in space for the first time.
Published Galaxies in dense environments tend to be larger, settling one cosmic question and raising others



A new study has found galaxies with more neighbors tend to be larger than their counterparts that have a similar shape and mass, but reside in less dense environments. The team, which used a machine-learning algorithm to analyze millions of galaxies, reports that galaxies found in denser regions of the universe are as much as 25% larger than isolated galaxies. The findings resolve a long-standing debate among astrophysicists over the relationship between a galaxy's size and its environment, but also raise new questions about how galaxies form and evolve over billions of years.
Published Rocks collected on Mars hold key to water and perhaps life on the planet: Bring them back to Earth



Between July and November of 2022, NASA's Perseverance rover collected seven samples of sediment from an ancient alluvial fan in Jezero crater. While onboard analysis gave researchers some information about their origins, only detailed analysis on Earth can retrieve evidence of when water flowed on Mars and whether life arose there. Geophysicists had hoped to get these samples back by 2033, but NASA's sample return mission may be delayed beyond that date.
Published Rocks from Mars' Jezero Crater, which likely predate life on Earth, contain signs of water



Scientists report that rock samples from Mars' Jezero Crater contain minerals that are typically formed in water. While the presence of organic matter is inconclusive, the rocks could be scientists' best chance at finding remnants of ancient Martian life.