Showing 20 articles starting at article 841
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Space: General
Published Astronomers detect seismic ripples in ancient galactic disk



A new snapshot of an ancient, far-off galaxy could help scientists understand how it formed and the origins of our own Milky Way. At more than 12 billion years old, BRI 1335-0417 is the oldest and furthest known spiral galaxy in our universe. The researchers were able to not only capture the motion of the gas around BRI 1335-0417, but also reveal a seismic wave forming -- a first in this type of early galaxy.
Published New 1.5-billion-pixel image shows Running Chicken Nebula in unprecedented detail



While many holiday traditions involve feasts of turkey, soba noodles, latkes or Pan de Pascua, this year, the European Southern Observatory is bringing you a holiday chicken. The so-called Running Chicken Nebula, home to young stars in the making, is revealed in spectacular detail in this 1.5-billion-pixel image captured by the VLT Survey Telescope.
Published NASA's Hubble watches 'spoke season' on Saturn



A new photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes.
Published Supernova encore: Second lensed supernova in a distant galaxy



In November 2023, NASA's James Webb Space Telescope observed a massive cluster of galaxies named MACS J0138.0-2155. Through an effect called gravitational lensing, first predicted by Albert Einstein, a distant galaxy named MRG-M0138 appears warped by the powerful gravity of the intervening galaxy cluster. In addition to warping and magnifying the distant galaxy, the gravitational lensing effect caused by MACS J0138 produces five different images of MRG-M0138.
Published Pancake stack of films on a balloon most accurate gamma-ray telescope



A pancake stack of radioactivity-sensitive films carried through the sky by a balloon was able to take the world's most accurate picture of a neutron star's gamma ray beam. To achieve this, researchers combined the oldest method of capturing radioactive radiation with the newest data capturing techniques and a clever time-recording device.
Published Novel catalyst system for CO2 conversion



Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource. A novel catalyst system could help reach that goal.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Millions of mysterious pits in the ocean decoded



The world's ocean are a vast habitat for countless creatures that settle, spawn, dig or feed on the seafloor. They also influence the shape of the ocean floor. How exactly this takes place has been scarcely investigated so far. In an interdisciplinary study, geoscientists, biologists and oceanographers, have examined crater-like depressions on the seafloor of the North Sea. They were able to show that these directly relate to the habitats of porpoises and sand eels, and for the first time provide a conclusive explanation for the importance of vertebrates in shaping the seafloor.
Published Cosmic lights in the forest



Supercomputer helped astronomers develop PRIYA, the largest suite of hydrodynamic simulations yet made of large-scale structure in the universe.
Published One small material, one giant leap for life on Mars: New research takes us a step closer to sustaining human life on the red planet



Researchers have discovered the transformative potential of Martian nanomaterials, potentially opening the door to sustainable habitation on the red planet.
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.
Published Ringing in the holidays with ringed planet Uranus



NASA's James Webb Space Telescope recently trained its sights on unusual and enigmatic Uranus, an ice giant that spins on its side. Webb captured this dynamic world with rings, moons, storms, and other atmospheric features -- including a seasonal polar cap. The image expands upon a two-color version released earlier this year, adding additional wavelength coverage for a more detailed look.
Published Unveiling molecular origami: A breakthrough in dynamic materials



A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.
Published Scientists tackle difficult-to-recycle thermoset polymers



A team of scientists has got a step closer to making several different types of plastic much easier to recycle, using a method that could be applied to a whole range of difficult-to-recycle polymers, including rubbers, gels and adhesives.
Published Little bacterium may make big impact on rare-earth processing



A tiny, hard-working bacterium -- which weighs one-trillionth of a gram -- may soon have a large influence on processing rare earth elements in an eco-friendly way.
Published Exoplanets' climate -- it takes nothing to switch from habitable to hell



The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers has achieved a world's first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun's luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable.
Published For this emergent class of materials, 'solutions are the problem'



Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.
Published Scientists measure the distance to stars by their music



A team of astronomers has used asteroseismology, or the study of stellar oscillations, to accurately measure the distance of stars from the Earth. Their research examined thousands of stars and checked the measurements taken during the Gaia mission to study the near Universe.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published New red galaxies turn out to be already known blue galaxies



Not all discoveries turn out to be actual new discoveries. This was the case for the extremely red objects (EROs) found in James Webb Space Telescope (JWST) data. Analysis shows that they are very similar to blue-excess dust obscured galaxies (BluDOGs) already reported in Subaru Telescope data.