Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Environmental: Ecosystems
Published Researchers pump brakes on 'blue acceleration' harming the world ocean



Protecting the world ocean against accelerating damage from human activities could be cheaper and take up less space than previously thought, new research has found.
Published Chemical synthesis: New strategy for skeletal editing on pyridines



A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.
Published Unlocking the secrets of quasicrystal magnetism: Revealing a novel magnetic phase diagram



Non-Heisenberg-type approximant crystals have many interesting properties and are intriguing for researchers of condensed matter physics. However, their magnetic phase diagrams, which are crucial for realizing their potential, remain completely unknown. Now, a team of researchers has constructed the magnetic phase diagram of a non-Heisenberg Tsai-type 1/1 gold-gallium-terbium approximant crystal. This development marks a significant step forward for quasicrystal research and for the realization of magnetic refrigerators and spintronic devices.
Published Translating nuclear waste site data into microbial ecosystem insights



A flagship seven-year study that explores how environmental stresses influence different ecological processes shaping the composition and structure of microbial communities in groundwater has now been published.
Published Efficiently moving urea out of polluted water is coming to reality



Researchers have developed a material to remove urea from water and potentially convert it into hydrogen gas. By building these materials of nickel and cobalt atoms with carefully tailored electronic structures, the group has unlocked the potential to enable these transition metal oxides and hydroxides to selectively oxidize urea in an electrochemical reaction. The team's findings could help use urea in waste streams to efficiently produce hydrogen fuel through the electrolysis process, and could be used to sequester urea from water, maintaining the long-term sustainability of ecological systems, and revolutionizing the water-energy nexus.
Published Rain can spoil a wolf spider's day, too



Researchers found that wolf spiders can't signal others or perceive danger from predators as easily on rain-soaked leaves compared to dry ones. Even communicating with would-be mates is harder after it rains.
Published Chemists create a 2D heavy fermion



Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Climate change isn't producing expected increase in atmospheric moisture over dry regions



The warming climate has not lead to an expected increase in atmospheric moisture over arid and semi-arid regions of the world. The finding, which has surprised scientists, indicates that some regions may be even more vulnerable to future wildfires and extreme heat than projected.
Published Let it glow: Scientists develop new approach to detect 'forever chemicals' in water



Researchers have created a new way to detect 'forever chemical' pollution in water, via a luminescent sensor.
Published New AI makes better permafrost maps



New insights from artificial intelligence about permafrost coverage in the Arctic may soon give policy makers and land managers the high-resolution view they need to predict climate-change-driven threats to infrastructure such as oil pipelines, roads and national security facilities.
Published Stalagmites as climate archive



When combined with data from tree-ring records, stalagmites can open up a unique archive to study natural climate fluctuations, a research team has demonstrated. The researchers analyzed the isotopic composition of oxygen in a stalagmite formed from calcareous water in a cave in southern Germany. In conjunction with the data acquired from tree rings, they were able to reconstruct short-term climate fluctuations over centuries and correlate them with historically documented environmental events.
Published New insight into frictionless surfaces is slippery slope to energy-efficient technology



Scientists have made an insight into superlubricity, where surfaces experience extremely low levels of friction. This could benefit future technologies by reducing energy lost to friction by moving parts.
Published A new, rigorous assessment of OpenET accuracy for supporting satellite-based water management



Sustainable water management is an increasing concern in arid regions around the world, and scientists and regulators are turning to remote sensing tools like OpenET to help track and manage water resources. OpenET uses publicly available data produced by NASA and USGS Landsat and other satellite systems to calculate evapotranspiration (ET), or the amount of water lost to the atmosphere through soil evaporation and plant transpiration, at the level of individual fields. This tool has the potential to revolutionize water management, allowing for field-scale operational monitoring of water use, and a new study provides a thorough analysis of the accuracy of OpenET data for various crops and natural land cover types.
Published Study reveals a reaction at the heart of many renewable energy technologies



Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Climate change threatens global forest carbon sequestration, study finds



Climate change is causing Western U.S. forests to be less effective carbon sinks, even as it boosts the productivity of forests in the Eastern U.S., according to new research.
Published Squishy, metal-free magnets to power robots and guide medical implants



'Soft robots,' medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism -- thanks to a metal-free magnetic gel developed by researchers. Carbon-based, magnetic molecules are chemically bonded to the molecular network of a gel, creating a flexible, long-lived magnet for soft robotics.
Published Cheap substitute for expensive metal in an industrially common chemical reaction



Researchers have helped minimize the cost of an important class of chemical transformations: converting nitriles into primary amines. Their experimental protocol uses a cheap nickel catalyst instead of an expensive noble metal, is convenient to conduct, and works for a broad range of starting materials. This work is an important advance in sustainable chemistry that might help lower the cost of producing nylon and many other everyday products.
Published Chasing the light: Study finds new clues about warming in the Arctic



The Arctic, Earth's icy crown, is experiencing a climate crisis like no other. It's heating up at a furious pace -- four times faster than the rest of our planet. Researchers are pulling back the curtain on the reduction of sunlight reflectivity, or albedo, which is supercharging the Arctic's warming.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.