Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Space: The Solar System
Published Novel catalyst system for CO2 conversion



Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource. A novel catalyst system could help reach that goal.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Are diamonds GaN's best friend? Revolutionizing transistor technology



A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.
Published One small material, one giant leap for life on Mars: New research takes us a step closer to sustaining human life on the red planet



Researchers have discovered the transformative potential of Martian nanomaterials, potentially opening the door to sustainable habitation on the red planet.
Published An electrifying improvement in copper conductivity



A newly developed, highly conductive copper wire could find applications in the electric grid, as well as in homes and businesses. The finding defies what's been thought about how metals conduct electricity.
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.
Published Ringing in the holidays with ringed planet Uranus



NASA's James Webb Space Telescope recently trained its sights on unusual and enigmatic Uranus, an ice giant that spins on its side. Webb captured this dynamic world with rings, moons, storms, and other atmospheric features -- including a seasonal polar cap. The image expands upon a two-color version released earlier this year, adding additional wavelength coverage for a more detailed look.
Published Scientists tackle difficult-to-recycle thermoset polymers



A team of scientists has got a step closer to making several different types of plastic much easier to recycle, using a method that could be applied to a whole range of difficult-to-recycle polymers, including rubbers, gels and adhesives.
Published First observation of how water molecules move near a metal electrode



A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.
Published Exoplanets' climate -- it takes nothing to switch from habitable to hell



The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers has achieved a world's first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun's luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable.
Published For this emergent class of materials, 'solutions are the problem'



Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.
Published Scientists measure the distance to stars by their music



A team of astronomers has used asteroseismology, or the study of stellar oscillations, to accurately measure the distance of stars from the Earth. Their research examined thousands of stars and checked the measurements taken during the Gaia mission to study the near Universe.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published Upcycling leftover cardboard to make a new type of foam packaging



With the holiday season in full swing, gifts of all shapes and sizes are being shipped around the world. But all that packaging generates lots of waste, including cardboard boxes and plastic-based foam cushioning. Rather than discard those boxes, researchers have developed a cushioning foam from cardboard waste. Their upcycled material was stronger and more insulating than traditional, plastic foam-based cushioning.
Published Researchers find way to weld metal foam without melting its bubbles



Researchers have identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.
Published Tiniest free-floating brown dwarf



Brown dwarfs are objects that straddle the dividing line between stars and planets. They form like stars, growing dense enough to collapse under their own gravity, but they never become dense and hot enough to begin fusing hydrogen and turn into a star. At the low end of the scale, some brown dwarfs are comparable with giant planets, weighing just a few times the mass of Jupiter.
Published Researchers create stable hybrid laser by 3D printing micro-optics onto fibers



For the first time, researchers have shown that 3D-printed polymer-based micro-optics can withstand the heat and power levels that occur inside a laser. The advance enables inexpensive compact and stable laser sources that would be useful in a variety of applications, including the lidar systems used for autonomous vehicles.
Published Towards next-generation nanocatalysts to revolutionize active electron transfer



Over the years, scientists have proposed many novel molecular systems for photoinduced electron transfer. Researchers have now developed a copolymer-conjugated nanocatalytic system that can drive efficient photoinduced electron transfer. They employed a temperature-responsive ternary random copolymer and coupled it to platinum nanoparticles. By enabling dynamic electron transfer and driving photoinduced hydrogen generation, this innovation can have far-reaching implications for artificial photosynthesis, electrochemical reactions, macromolecular recognition, and bio-inspired soft materials.
Published Ultra-hard material to rival diamond discovered



Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.
Published Some icy exoplanets may have habitable oceans and geysers



A new study expands the search for life beyond our solar system by indicating that 17 exoplanets (worlds outside our solar system) could have oceans of liquid water, an essential ingredient for life, beneath icy shells. Water from these oceans could occasionally erupt through the ice crust as geysers. The science team calculated the amount of geyser activity on these exoplanets, the first time these estimates have been made. They identified two exoplanets sufficiently close where signs of these eruptions could be observed with telescopes.