Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Environmental: Wildfires
Published New recipe for efficient, environmentally friendly battery recycling



Researchers are now presenting a new and efficient way to recycle metals from spent electric car batteries. The method allows recovery of 100 per cent of the aluminum and 98 per cent of the lithium in electric car batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid -- an organic acid that can be found in the plant kingdom.
Published Cocoa pods -- a source of chocolate, and potentially, flame retardants



As Halloween approaches, so too does the anticipation of a trick-or-treating stash filled with fun-sized chocolate candy bars. But to satisfy our collective craving for this indulgence, millions of cocoa pods are harvested annually. While the beans and pulp go to make chocolate, their husks are thrown away. Now, researchers show that cocoa pod husks could be a useful starting material for flame retardants.
Published Decontamination method zaps pollutants from soil



A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.
Published Harnessing molecular power: Electricity generation on the nanoscale



Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.
Published Researchers develop organic nanozymes suitable for agricultural use



Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.
Published New polymer membranes, AI predictions could dramatically reduce energy, water use in oil refining



Researchers describe a new kind of polymer membrane they created that could reshape how refineries process crude oil, dramatically reducing the energy and water required while extracting even more useful materials. The team also created artificial intelligence tools to predict the performance of these kinds of membranes, which could accelerate development of new ones.
Published Wildfires threaten environmental gains in climate-crucial Amazon



Despite steps toward decreasing deforestation, uncontrolled wildfires are threatening environmental gains in Brazilian Amazonia, one of the world's most critical carbon sinks and a region of high biological and cultural diversity.
Published Research shows wildfire smoke may linger in homes long after initial blaze



Newly published research on indoor air quality shows wildfire smoke may linger in homes long after the initial blaze has been put out or winds have shifted. The findings show that wildfire smoke can attach to home surfaces like carpet, drapes or counters -- extending the exposure for those inside and potentially causing health problems even after an initial cleaning activity by air purifiers.
Published Novel catalyst for green production of fine chemicals and pharmaceuticals



Scientists have developed an innovative catalyst that achieves a significantly lower carbon footprint, paving the way for greener chemical and pharmaceutical manufacturing processes.
Published An electrical switch to control chemical reactions



New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society's needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group has discovered how to use an external electric field to control and accelerate a chemical reaction, like a 'switch'. This work could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.
Published Plastic production via advanced recycling lowers GHG emissions



Research reveals that recycling post-use plastic through pyrolysis can reduce GHG emissions by 18-23%. Approach can potentially enhance sustainability by minimizing waste and fossil resource reliance.
Published Surprising discovery shows electron beam radiation can repair nanostructures



In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.
Published Metal-organic frameworks could someday deliver antibacterial nitric oxide



Because metal-organic frameworks (MOFs) — highly porous metal complexes — are so structurally and chemically diverse, they could be used for many applications, such as drug delivery and environmental clean-up. But researchers still need to get a better understanding of how they function, especially when embedded in polymers. Researchers have now developed and characterized nitric oxide (NO)-storing MOFs embedded in a thin film with novel antibacterial potential.
Published Epiphytes, amazing plants like moss and bromeliads found in trees, face growing threats



Epiphytes, plants such as orchids and mosses that grow in trees, draw nutrients from the air and create refuge for all sorts of other life forms. They are the foundation of forest canopy ecosystems, but they are facing threats from human and natural disturbances.
Published Bringing out the color in zinc



Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.
Published New study offers improved strategy for social media communications during wildfires



New research offers an improved strategy for social media communications during wildfires and contradicting existing crisis communication theory.
Published Ecotoxicity testing of micro- and nano-plastics



An international team of researchers has published the first harmonized exposure protocol for ecotoxicity testing of microplastics and nanoplastics.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published Groundbreaking study shows defects spreading through diamond faster than the speed of sound



Settling a half century of debate, researchers have discovered that tiny linear defects can propagate through a material faster than sound waves do. These linear defects, or dislocations, are what give metals their strength and workability, but they can also make materials fail catastrophically – which is what happens every time you pop the pull tab on a can of soda. The fact that they can travel so fast gives scientists a new appreciation of the unusual types of damage they might do to a broad range of materials in extreme conditions.
Published Physicists find evidence for magnetically bound excitons



Physicists have experimentally detected how so-called Hubbard excitons form in real-time.