Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Geochemistry
Published

Promethium bound: Rare earth element's secrets exposed      (via sciencedaily.com)     Original source 

Scientists have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory, opening a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Under extreme impacts, metals get stronger when heated, study finds      (via sciencedaily.com)     Original source 

Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.

Anthropology: Cultures Anthropology: General Archaeology: General
Published

Excavation reveals 'major' ancient migration to Timor Island      (via sciencedaily.com)     Original source 

The discovery of thousands of stone artefacts and animal bones in a deep cave in Timor Island has led archaeologists to reassess the route that early humans took to reach Australia. Researchers dated and analysed the artefacts and sediment at the Laili rock shelter in central-north Timor-Leste, north of Australia, to pinpoint the arrival of the colonists.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Ethylene from CO2: Building-kit catalyst      (via sciencedaily.com)     Original source 

Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Anthropology: Cultures Anthropology: General Biology: Botany Ecology: Invasive Species
Published

Legacy of Indigenous stewardship of camas dates back more than 3,500 years      (via sciencedaily.com)     Original source 

A new study found evidence that Indigenous groups in the Pacific Northwest were intentionally harvesting edible camas bulbs at optimal stages of the plant's maturation as far back as 3,500 years ago.

Anthropology: Cultures Anthropology: General
Published

What pottery reveals about prehistoric Central European culinary traditions      (via sciencedaily.com)     Original source 

The analysis of fat traces in over one hundred pottery vessels reveals deep changes in food consumption and preparation by communities living in central Germany between the Early Neolithic and the Late Bronze Age, as well as in their relation with innovations in pottery styles and decorations. In a groundbreaking study, researchers identified a generalized inclusion of dairy products in prehistoric diets, a preference in consuming pork with the arrival of communities from the Eurasian Steppe, and the importance of dairy products in funeral rites. Central Germany was a key region for the emergence of great prehistoric cultures, such as the Linear Pottery Culture, the Corded Ware Culture, the Bell Beaker populations and the Unetice Culture, one of the first state societies in Europe.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Researchers introduce programmable materials to help heal broken bones      (via sciencedaily.com)     Original source 

Natural materials like bone, bird feathers and wood have an intelligent approach to physical stress distribution, despite their irregular architectures. However, the relationship between stress modulation and their structures has remained elusive. A new study that integrates machine learning, optimization, 3D printing and stress experiments allowed engineers to gain insight into these natural wonders by developing a material that replicates the functionalities of human bone for orthopedic femur restoration.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

By listening, scientists learn how a protein folds      (via sciencedaily.com)     Original source 

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues      (via sciencedaily.com)     Original source 

Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.

Anthropology: General Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Diverse headgear in hoofed mammals evolved from common ancestor      (via sciencedaily.com)     Original source 

From the small ossicones on a giraffe to the gigantic antlers of a male moose -- which can grow as wide as a car -- the headgear of ruminant hooved mammals is extremely diverse, and new research suggests that despite the physical differences, fundamental aspects of these bony adaptations likely evolved from a common ancestor.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Expanding on the fundamental principles of liquid movement      (via sciencedaily.com)     Original source 

We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.

Anthropology: General Archaeology: General Biology: Biochemistry
Published

Pagan-Christian trade networks supplied horses from overseas for the last horse sacrifices in Europe      (via sciencedaily.com)     Original source 

Horses crossed the Baltic Sea in ships during the Late Viking Age and were sacrificed for funeral rituals. Studies on the remains of horses found at ancient burial sites in Russia and Lithuania show that they were brought overseas from Scandinavia utilizing expansive trade networks connecting the Viking world with the Byzantine and Arab Empires. Up to now, researchers had believed sacrificial horses were always locally-sourced stallions. But these results reveal horses from modern Sweden or Finland traveled up to 1,500 km across the Baltic Sea. The findings also show that the sex of the horse was not necessarily a factor in them being chosen for sacrifice, with genetic analysis showing one in three were mares.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials      (via sciencedaily.com)     Original source 

Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Anthropology: Cultures Anthropology: General Archaeology: General Biology: Biochemistry Paleontology: Climate
Published

Early arrival and expansion of palaeolithic people on Cyprus      (via sciencedaily.com)     Original source 

The patterns of dispersal of early humans across continents and islands are hotly debated, but researchers have found that Pleistocene hunter-gatherers settled in Cyprus thousands of years earlier than previously thought. In examining the timing of the first human occupation of Cyprus, research found that large islands in the Mediterranean Sea were attractive and favorable destinations for palaeolithic peoples. These findings refute previous studies that suggested Mediterranean islands would have been unreachable and inhospitable for Pleistocene hunter-gatherer societies.