Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breaking bonds to form bonds: Rethinking the Chemistry of Cations      (via sciencedaily.com)     Original source 

A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Physics: General
Published

Shedding light on perovskite hydrides using a new deposition technique      (via sciencedaily.com)     Original source 

Perovskite hydrides are promising materials for various emerging energy technologies, but measuring their intrinsic hydride-ion conductivity is difficult. In a recent study, researchers address this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. These efforts will bolster research on hydrogen-related materials.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

What fire ants can teach us about making better, self-healing materials      (via sciencedaily.com)     Original source 

Fire ants form rafts to survive flooding, but how do those bonds work? And what can we learn from them? A professor is researching those questions to expand our knowledge of materials science.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

A novel multifunctional catalyst turns methane into valuable hydrocarbons      (via sciencedaily.com)     Original source 

The optimal design of a novel zeolite catalyst enables tandem reaction that turns greenhouse gases into value-added chemicals, report scientists. By tuning the separation between different active sites on the catalyst, they achieved the stepwise conversion of methane into methanol and then to hydrocarbons at mild conditions. These findings will help reduce energy costs and greenhouse gas emissions across various industrial fields.

Anthropology: General Biology: Botany Biology: Evolutionary Biology: General Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Iconic baobabs: The origin and long-distance travels of upside down trees      (via sciencedaily.com)     Original source 

The research cracks the code on the iconic baobab tree's origin story, revealing their surprising origins in Madagascar and incredible long-distance dispersals to Africa and Australia. The study unveils how baobabs developed unique pollination mechanisms -- some attracting hawkmoths, others lemurs, and even bats -- showcasing remarkable evolutionary adaptations. The research sheds light on how climate change has shaped the baobab's distribution and diversification over millions of years, offering valuable insights for understanding plant responses to future environmental shifts.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Next-generation sustainable electronics are doped with air      (via sciencedaily.com)     Original source 

Semiconductors are the foundation of all modern electronics. Now, researchers have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future cheap and sustainable organic semiconductors.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Geoscience: Geochemistry
Published

Promising new development in solar cell technology      (via sciencedaily.com)     Original source 

Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General
Published

Scientists generate heat over 1,000 degrees Celsius with solar power instead of fossil fuel      (via sciencedaily.com)     Original source 

Instead of burning fossil fuels to smelt steel and cook cement, researchers in Switzerland want to use heat from the sun. The proof-of-concept study uses synthetic quartz to trap solar energy at temperatures over 1,000 C (1,832 F), demonstrating the method's potential role in providing clean energy for carbon-intensive industries.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create an 'optical conveyor belt' for quasiparticles      (via sciencedaily.com)     Original source 

Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Transforming waste carbon dioxide into high-value chemicals with a cost reduction of about 30%      (via sciencedaily.com)     Original source 

A team of scientists has developed a novel technique to convert carbon dioxide (CO2) from treated flue gas directly into high-value chemicals and fuels. This innovation sidesteps the conventional approach of using high-purity CO2 for electrochemical reduction processes, achieving significant cost savings of about 30%.

Chemistry: Inorganic Chemistry
Published

Exploring interface phenomena for more durable and effective nickel--tungsten alloys      (via sciencedaily.com)     Original source 

The insights into the formation of various phases, including intermetallic compounds, at the interface between nickel (Ni) and tungsten (W) can lead to the development of advanced high-temperature Ni--W coatings. Their study sheds light on the formation of intercrystallite regions and Kirkendall voids, which can be leveraged to improve the durability and effectiveness of the alloys.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Manganese sprinkled with iridium: a quantum leap in green hydrogen production      (via sciencedaily.com)     Original source 

Researchers report a new method that reduces the amount of iridium needed to produce hydrogen from water by 95%, without altering the rate of hydrogen production. This breakthrough could revolutionize our ability to produce ecologically friendly hydrogen and help usher in a carbon-neutral hydrogen economy.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

2D all-organic perovskites: potential use in 2D electronics      (via sciencedaily.com)     Original source 

Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Getting dirty to clean up the chemical industry's environmental impact      (via sciencedaily.com)     Original source 

The global chemical industry is a major fossil fuel consumer and climate change contributor; however, new research has identified how the sector could clean up its green credentials by getting dirty.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists produce new-to-nature enzyme containing boron      (via sciencedaily.com)     Original source 

Chemists created an enzyme with boronic acid at its reactive center. This approach can produce more selective reactions with boron, and allows the use of directed evolution to improve its catalytic power.

Chemistry: General Chemistry: Inorganic Chemistry Mathematics: Modeling
Published

An AI leap into chemical synthesis      (via sciencedaily.com)     Original source 

Scientists introduce a large language model-based AI system that revolutionizes chemistry by integrating 18 advanced tools for tasks like organic synthesis and drug discovery.

Biology: Biochemistry Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Bio-inspired materials' potential for efficient mass transfer boosted by a new twist on a century-old theory      (via sciencedaily.com)     Original source 

The natural vein structure found within leaves -- which has inspired the structural design of porous materials that can maximize mass transfer -- could unlock improvements in energy storage, catalysis, and sensing thanks to a new twist on a century-old biophysical law.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

The Clues for Cleaner Water      (via sciencedaily.com)     Original source 

By using experimental electrochemical analyses, mass spectrometry, and computational quantum chemistry modeling, the researchers created an 'atomic-scale storyline' to explain how ozone is generated on NATO electrocatalysts. They identified that some of the nickel in NATO is probably leaching out of the electrodes via corrosion, and these nickel atoms, now floating in the solution near the catalyst, can promote chemical reactions that eventually generate ozone.