Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Anthropology: General Archaeology: General Biology: Microbiology
Published

Early toilets reveal dysentery in Old Testament Jerusalem      (via sciencedaily.com)     Original source 

Study of 2,500-year-old latrines from the biblical Kingdom of Judah shows the ancient faeces within contain Giardia -- a parasite that can cause dysentery.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Making the structure of 'fire ice' with nanoparticles      (via sciencedaily.com)     Original source 

Cage structures made with nanoparticles could be a route toward making organized nanostructures with mixed materials, and researchers have shown how to achieve this through computer simulations.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics
Published

Twisting under the stroboscope -- Controlling crystal lattices of hybrid solar cell materials with terahertz light      (via sciencedaily.com)     Original source 

To overcome global energy challenges and fight the looming environmental crisis, researchers around the world investigate new materials for converting sunlight into electricity. Some of the most promising candidates for high-efficiency low-cost solar cell applications are based on lead halide perovskite (LHP) semiconductors. Despite record-breaking solar cell prototypes, the microscopic origin of the surprisingly excellent optoelectronic performance of this material class is still not completely understood. Now, an international team of physicists and chemists has demonstrated laser-driven control of fundamental motions of the LHP atomic lattice.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Snapshots of photoinjection      (via sciencedaily.com)     Original source 

Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum matter breakthrough: Tuning density waves      (via sciencedaily.com)     Original source 

Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Engineering: Robotics Research Offbeat: General Physics: Optics
Published

Physical chemists develop photochromic active colloids shedding light on the development of new smart active materials      (via sciencedaily.com)     Original source 

In nature, the skin of cephalopods (animals with tentacles attached to the head) exhibits unparalleled camouflage ability. Their skin contains pigment groups that can sense changes in environmental light conditions and adjust their appearance through the action of pigment cells. Although intricate in nature, this colour-changing ability is fundamentally based on a mechanical mechanism in which pigment particles are folded or unfolded under the control of radial muscles. Inspired by this natural process, a research team forms dynamic photochromic nanoclusters by mixing cyan, magenta and yellow microbeads, achieving photochromism on a macro scale.

Anthropology: Cultures Archaeology: General Environmental: Ecosystems Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Paleontology: Climate Paleontology: Fossils
Published

Ancient climate change solves mystery of vanished South African lakes      (via sciencedaily.com)     Original source 

New evidence for the presence of ancient lakes in some of the most arid regions of South Africa suggests that Stone Age humans may have been more widespread across the continent than previously thought.

Anthropology: Cultures Archaeology: General Environmental: Ecosystems
Published

Oldest architectural plans detail mysterious desert mega structures      (via sciencedaily.com)     Original source 

Researchers have identified engravings in Jordan and Saudi Arabia as the oldest known scaled building plans in human history.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Paleontology: Fossils
Published

Humanity's earliest recorded kiss occurred in Mesopotamia 4,500 years ago      (via sciencedaily.com)     Original source 

Written sources from Mesopotamia suggest that kissing in relation to sex was practiced by the peoples of the ancient Middle East 4,500 years ago.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

An electric vehicle battery for all seasons      (via sciencedaily.com)     Original source 

Scientists have developed a fluorine-containing electrolyte for lithium-ion batteries whose charging performance remains high in frigid regions and seasons. They also determined why it is so effective.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Curved spacetime in a quantum simulator      (via sciencedaily.com)     Original source 

The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Scientists reveal breakthrough that could lead to cleaner hydrogen energy      (via sciencedaily.com)     Original source 

Chemists have taken a big step toward splitting hydrogen and oxygen molecules to make pure hydrogen -- without using fossil fuels. Results from pulse radiolysis experiments have laid bare the complete reaction mechanism for an important group of 'water-splitting' catalysts. The work means scientists are closer to making pure hydrogen from renewable energy, an energy source that could contribute to a greener future for the nation and world.

Anthropology: Cultures Archaeology: General Environmental: Water Geoscience: Environmental Issues
Published

South Africa's desert-like interior may have been more inviting to our human ancestors      (via sciencedaily.com)     Original source 

Lining the Cape of South Africa and its southern coast are long chains of caves that nearly 200,000 years ago were surrounded by a lush landscape and plentiful food.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

New priming method improves battery life, efficiency      (via sciencedaily.com)     Original source 

Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Metal-filtering sponge removes lead from water      (via sciencedaily.com)     Original source 

Engineers have developed a new sponge that can remove metals -- including toxic heavy metals like lead and critical metals like cobalt -- from contaminated water, leaving safe, drinkable water behind. In proof-of-concept experiments, the researchers tested their new sponge on a highly contaminated sample of tap water, containing more than 1 part per million of lead. With one use, the sponge filtered lead to below detectable levels.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Robotics Research
Published

Milk reaction inspires new way to make highly conductive gel films      (via sciencedaily.com)     Original source 

A research team has developed what they call a 'dip-and-peel' strategy for simple and rapid fabrication of two-dimensional ionogel membranes. By dipping sustainable biomass materials in certain solvents, molecules naturally respond by arranging themselves into functional thin films at the edge of the material that can easily be removed using nothing more than a simple set of tweezers.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Unlocking the power of photosynthesis for clean energy production      (via sciencedaily.com)     Original source 

Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.