Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Can hydrogels help mend a broken heart?      (via sciencedaily.com)     Original source 

You can mend a broken heart this valentine s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.

Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Paleontology: Climate Paleontology: General
Published

Researchers studying ocean transform faults, describe a previously unknown part of the geological carbon cycle      (via sciencedaily.com)     Original source 

This study reports widespread mineral carbonation of mantle rocks in an oceanic transform fueled by magmatic degassing of CO2. The findings describe a previously unknown part of the geological carbon cycle in transform faults that represent one of the three principal plate boundaries on Earth. The confluence of tectonically exhumed mantle rocks and CO2-rich alkaline basalt formed through limited extents of melting characteristic of the St. Paul's transform faults may be a pervasive feature at oceanic transform faults in general. Because transform faults have not been accounted for in previous estimates of global geological CO2 fluxes, the mass transfer of magmatic CO2 to the altered oceanic mantle and seawater may be larger than previously thought.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Not only in information technology: Restart also works in chemical simulations      (via sciencedaily.com)     Original source 

Scientists have discovered that a known practice in information technology can also be applied to chemistry. Researchers found that to enhance the sampling in chemical simulations, all you need to do is stop and restart.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Key advance for capturing carbon from the air      (via sciencedaily.com)     Original source 

A chemical element so visually striking that it was named for a goddess shows a 'Goldilocks' level of reactivity -- neither too much nor too little -- that makes it a strong candidate as a carbon scrubbing tool.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How electron spectroscopy measures exciton 'holes'      (via sciencedaily.com)     Original source 

Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets      (via sciencedaily.com)     Original source 

Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.

Chemistry: Inorganic Chemistry Engineering: Graphene
Published

New adhesive tape picks up and sticks down 2D materials as easily as child's play      (via sciencedaily.com)     Original source 

A research team has developed a tape that can be used to stick two-dimensional (2D) materials to many different surfaces, in an easy and user-friendly way. Their finding will aid research into and boost production of 2D materials for next-generation devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Molecular manganese complex as superphotooxidant      (via sciencedaily.com)     Original source 

Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants, including chromium, iron, and cobalt. All these photocatalysts require high energy light for excitation and their oxidizing power has not yet been fully exploited. Furthermore, precious and hence expensive metals are the decisive ingredients in most cases. A team of researchers has now developed a new molecular system based on the element manganese. Manganese, as opposed to precious metals, is the third most abundant metal after iron and titanium and hence widely available and very cheap.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

New process allows full recovery of starting materials from tough polymer composites      (via sciencedaily.com)     Original source 

In a win for chemistry, inventors have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer and later recovering all of its starting materials.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General Physics: Quantum Physics Space: Astrophysics Space: General
Published

Physicists capture the first sounds of heat 'sloshing' in a superfluid      (via sciencedaily.com)     Original source 

For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.

Ecology: Trees Paleontology: Climate Paleontology: General
Published

Ancient pollen trapped in Greenland ice uncovers changes in Canadian forests over 800 years      (via sciencedaily.com)     Original source 

The Greenland ice sheet lies thousands of miles from North America yet holds clues to the distant continent's environmental history. Nearly two miles thick in places, the ice sheet grows as snow drifts from the sky and builds up over time. But snow isn't the only thing carried in by air currents that swirl around the atmosphere, with microscopic pollen grains and pieces of ash mixing with snowfall and preserving records of the past in the ice. A new study examined these pollen grains and identified how eastern Canada's forests grew, retreated, and changed through time.

Biology: Microbiology Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists develop artificial 'worm gut' to break down plastics      (via sciencedaily.com)     Original source 

A team of scientists has developed an artificial 'worm gut' to break down plastics, offering hope for a nature-inspired method to tackle the global plastic pollution problem.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Paleontology: Climate
Published

Ice cores provide first documentation of rapid Antarctic ice loss in the past      (via sciencedaily.com)     Original source 

Researchers have uncovered the first direct evidence that the West Antarctic Ice Sheet shrunk suddenly and dramatically at the end of the Last Ice Age, around eight thousand years ago. The evidence, contained within an ice core, shows that in one location the ice sheet thinned by 450 meters -- that's more than the height of the Empire State Building -- in just under 200 years.

Chemistry: Inorganic Chemistry
Published

A new 'metal swap' method for creating lateral heterostructures of 2D materials      (via sciencedaily.com)     Original source 

Heterostructures of two-dimensional materials have unique properties. Among them, lateral heterostructures, which can be used to make electronic devices, are challenging to synthesize. To address this, researchers used a new transmetallation technique to fabricate heterostructures with in-plane heterojunctions using Zn3BHT coordination nanosheet. This simple and powerful method enables the fabrication of ultrathin electronic devices for ultralarge-scale integrated circuits, marking a significant step forward for 2D materials research.

Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Paleontology: Climate Paleontology: General
Published

What turned Earth into a giant snowball 700 million years ago? Scientists now have an answer      (via sciencedaily.com)     Original source 

Inspired during field work in South Australia's Flinders Ranges, geoscientists have proposed that all-time low volcanic carbon dioxide emissions triggered a 57-million-year-long global 'Sturtian' ice age.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

BESSY II: Molecular orbitals determine stability      (via sciencedaily.com)     Original source 

Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. A team has now analyzed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products      (via sciencedaily.com)     Original source 

Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Structural isomerization of individual molecules using a scanning tunneling microscope probe      (via sciencedaily.com)     Original source 

An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

Chemists decipher reaction process that could improve lithium-sulfur batteries      (via sciencedaily.com)     Original source 

Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Solving an age-old mystery about crystal formation      (via sciencedaily.com)     Original source 

A crystals expert has published an answer to how crystals are formed and how molecules become a part of them, solving an age-old mystery about crystal formation.