Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry
Published

Pixel-by-pixel analysis yields insights into lithium-ion batteries      (via sciencedaily.com) 

By mining X-ray images, researchers have made significant new discoveries about the reactivity of lithium iron phosphate, a material used in batteries for electric cars and in other rechargeable batteries.

Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Chemist uses nature as inspiration for a sustainable, affordable adhesive system      (via sciencedaily.com) 

A chemist drew inspiration from the natural world, from his experiences scuba diving to studying shellfish in his lab. He has developed a sustainable adhesive system -- an alternative to toxic, permanent, traditional adhesives.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter      (via sciencedaily.com) 

Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers discover iron-targeting approaches to halt proliferation of cancer cells      (via sciencedaily.com) 

Researchers discovered a new class of iron-targeting compounds that hamper the proliferation of cultured malignant cells in a laboratory setting.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Important connectivity of metal oxides with hydrogen      (via sciencedaily.com) 

A recent article proposes a new way to understand how materials interact with hydrogen.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New ionic materials boost hydrogen fuel cell efficiency!      (via sciencedaily.com) 

A research team has made a groundbreaking advancement in improving the efficiency of hydrogen fuel cells, which are gaining significant attention as eco-friendly next-generation energy sources.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Polymer that can be adapted to high and low temperature extremes created      (via sciencedaily.com) 

Researchers have developed two closely related polymers that respond differently to high and low temperature thresholds, despite their similar design. The polymer pair could be used in applications in medicine, protein synthesis, protective coatings and other fields.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: Ecosystems Environmental: Water Geoscience: Geochemistry
Published

New bio-based glues form adhesive bonds that grow stronger in water      (via sciencedaily.com) 

Patent-pending adhesive formulations developed from fully sustainable, bio-based components establish bonds that grow stronger when underwater or exposed to wet conditions.

Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Paleontology: Climate
Published

Bursting air bubbles may play a key role in how glacier ice melts      (via sciencedaily.com)     Original source 

New research has uncovered a possible clue as to why glaciers that terminate at the sea are retreating at unprecedented rates: the bursting of tiny, pressurized bubbles in underwater ice.

Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Paleontology: Climate
Published

Stability inspection for West Antarctica shows: marine ice sheet is not destabilized yet, but possibly on a path to tipping      (via sciencedaily.com)     Original source 

Antarctica's vast ice masses seem far away, yet they store enough water to raise global sea levels by several meters. A team of experts has now provided the first systematic stability inspection of the ice sheet's current state. Their diagnosis: While they found no indication of irreversible, self-reinforcing retreat of the ice sheet in West Antarctica yet, global warming to date could already be enough to trigger the slow but certain loss of ice over the next hundreds to thousands of years.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Extending the playing field for organosulfurs: a new way to synthesize sulfinate esters      (via sciencedaily.com) 

Sulfinate esters, a type of organosulfur compounds, are typically synthesized using thiols. However, these substances are difficult to work with due to their unpleasant smell and oxidizability in air. Now, a research team has found a way to produce sulfinate esters through the direct oxidation of thioesters, which are easily accessible and stable. Their findings will help expand the field of organosulfur chemistry and hopefully lead to new applications in pharmaceuticals.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists devise a method for C-H activation of alcohols      (via sciencedaily.com) 

Chemists have extended a powerful molecule-building method -- called C-H activation -- to the broad class of chemicals known as alcohols.

Chemistry: Inorganic Chemistry Physics: Optics
Published

How pulsating pumping can lead to energy savings      (via sciencedaily.com) 

Pumping liquids may seem like a solved problem but optimizing the process is still an area of active research. Any pumping application -- from industrial scales to heating systems at home -- would benefit from a reduction in energy demands. Researchers now showed how pulsed pumping can reduce both friction from and energy consumption of pumping. For this, they took inspiration from a pumping system intimately familiar to everyone: the human heart.

Chemistry: Inorganic Chemistry Physics: General
Published

Pioneering beyond-silicon technology via residue-free field effect transistors      (via sciencedaily.com) 

Beyond-silicon technology demands ultra-high-performance field-effect transistors (FETs). Transition metal dichalcogenides (TMDs) provide an ideal material platform, but the device performances such as contact resistance, on/off ratio, and mobility are often limited by the presence of interfacial residues caused by transfer procedures. We show an ideal residue-free transfer approach using polypropylene carbonate (PPC) with a negligible residue for monolayer MoS2. By incorporating bismuth semimetal contact with atomically clean monolayer MoS2-FET on h-BN substrate, we obtain an ultralow Ohmic contact resistance approaching the quantum limit and a record-high on/off ratio of ~1011 at 15 K. Such an ultraclean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting TMDs.

Chemistry: Inorganic Chemistry Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Energy: Technology Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Better cybersecurity with new material      (via sciencedaily.com) 

Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels
Published

Striking gold with molecular mystery solution for potential clean energy      (via sciencedaily.com) 

Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Peering into nanofluidic mysteries one photon at a time      (via sciencedaily.com)     Original source 

Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.

Chemistry: General Chemistry: Inorganic Chemistry
Published

A step closer to digitizing the sense of smell: Model describes odors better than human panelists      (via sciencedaily.com) 

A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Growing triple-decker hybrid crystals for lasers      (via sciencedaily.com) 

By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.

Chemistry: Inorganic Chemistry
Published

Watching a bimetallic catalytic surface in action      (via sciencedaily.com) 

A team of researchers addressed the question: what happens to a Ga-promoted Cu surface under reaction conditions required for the synthesis of methanol? They found complex structural transformations of this bimetallic catalyst that might change the common view on the catalytically active surface structure.