Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Offbeat: Computers and Math
Published Flapping frequency of birds, insects, bats and whales described by universal equation



A single universal equation can closely approximate the frequency of wingbeats and fin strokes made by birds, insects, bats and whales, despite their different body sizes and wing shapes, researchers report in a new study.
Published Babies use 'helpless' infant period to learn powerful foundation models, just like ChatGPT



Babies' brains are not as immature as previously thought, rather they are using the period of postnatal 'helplessness' to learn powerful foundation models similar to those underpinning generative Artificial Intelligence, according to a new study.
Published A new way of designing auxetic materials



Auxetics defy common sense, widening when stretched and narrowing when compressed. Researchers have now made the process of using them much easier, paving the way for new types of auxetic products -- from better sneaker insoles to blast-resilient buildings.
Published Using AI to decode dog vocalizations



Have you ever wished you could understand what your dog is trying to say to you? Researchers are exploring the possibilities of AI, developing tools that can identify whether a dog's bark conveys playfulness or aggression.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Observing ultrafast photoinduced dynamics in a halogen-bonded supramolecular system



Researchers uncover how the halogen bond can be exploited to direct sequential dynamics in the multi-functional crystals, offering crucial insights for developing ultrafast-response times for multilevel optical storage.
Published Unraveling the physics of knitting



A team used experiments and simulations to quantify and predict how knit fabric response can be programmed. By establishing a mathematical theory of knitted materials, the researchers hope that knitting -- and textiles in general -- can be incorporated into more engineering and manufacturing applications.
Published A technique for more effective multipurpose robots



MIT researchers developed a technique to combine robotics training data across domains, modalities, and tasks using generative AI models. They create a combined strategy from several different datasets that enables a robot to learn to perform new tasks in unseen environments.
Published Altered carbon points toward sustainable manufacturing



Researchers develop a vastly more productive way to convert carbon dioxide into useful materials and compounds.
Published Transition-metal-free zeolite catalyst for direct conversion of methane to methanol



Direct oxidation of methane to methanol is dominated by transition- or noble-metal-based catalysts, thus making the reaction quite expensive. To make the process efficient and cost-effective, researchers developed a transition-metal-free aluminosilicate ferrierite zeolite catalyst that can produce methanol by using methane and nitrous oxide as starting materials. The new catalyst ensures excellent methanol production efficiency, one of the highest recorded rates in the literature thus far.
Published Scientists develop 'x-ray vision' technique to see inside crystals



A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.
Published Enhancing nanofibrous acoustic energy harvesters with artificial intelligence



Scientists have employed artificial intelligence techniques to improve the design and production of nanofibers used in wearable nanofiber acoustic energy harvesters (NAEH). These acoustic devices capture sound energy from the environment and convert it into electrical energy, which can then be applied in useful devices, such as hearing aids.
Published This self-powered sensor could make MRIs more efficient



MRI scans are commonly used to diagnose a variety of conditions, anything from liver disease to brain tumors. But, as anyone who has been through one knows, patients must remain completely still to avoid blurring the images and requiring a new scan. A prototype device could change that. The self-powered sensor detects movement and shuts down an MRI scan in real time, improving the process for patients and technicians.
Published Combining simulations and experiments to get the best out of Fe3Al



Researchers combined computer simulations and transmission electron microscopy experiments to better understand the ordering mobility and formation of microstructure domains in Fe3Al alloy. They were able to correlate structural changes with heat treatment to understand how particular mechanical behavior can be achieved. This is expected to allow the superelastic properties of Fe3Al to harnessed for the 3D printing of construction materials for absorbing seismic activity.
Published Researchers create materials with unique combo of stiffness, thermal insulation



Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.
Published Enhancing cybersecurity with 'moving trees'



Researchers propose a new tree-inspired one-time password scheme that provides security and privacy while supporting changing user environments.
Published Public have no difficulty getting to grips with an extra thumb, study finds



Researchers have shown that members of the public have little trouble in learning very quickly how to use a third thumb -- a controllable, prosthetic extra thumb -- to pick up and manipulate objects. The team tested the robotic device on a diverse range of participants, which they say is essential for ensuring new technologies are inclusive and can work for everyone.
Published Polymeric films protect anodes from sulfide solid electrolytes



Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.
Published Performance of eco-friendly cooling applications enhanced



Researchers have developed a sustainable and controllable strategy to manipulate interfacial heat transfer, paving the way for improving the performance of eco-friendly cooling in various applications such as electronics, buildings and solar panels.
Published Close to 1 in 2 surveyed say they would use air taxis in the future



Through a study of 1,002 participants, scientists have found that almost half (45.7 per cent) say they intend to use air taxis when they become available, with over one-third (36.2 per cent) planning to do so regularly. According to the findings, the intention to take autonomous air taxis is associated with factors such as trust in the AI technology deployed in air taxis, hedonic motivation (the fun or pleasure derived from using technology), performance expectancy (the degree to which users expect that using the system will benefit them), and news media attention (the amount of attention paid to news about air taxis).