Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Offbeat: Plants and Animals
Published How electron spectroscopy measures exciton 'holes'



Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.
Published Surprising behavior in one of the least studied mammals in the world



Beaked whales are among the least studied mammals in the world. Now, a new study reveals surprising information about the Baird's beaked whale species.
Published New adhesive tape picks up and sticks down 2D materials as easily as child's play



A research team has developed a tape that can be used to stick two-dimensional (2D) materials to many different surfaces, in an easy and user-friendly way. Their finding will aid research into and boost production of 2D materials for next-generation devices.
Published Molecular manganese complex as superphotooxidant



Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants, including chromium, iron, and cobalt. All these photocatalysts require high energy light for excitation and their oxidizing power has not yet been fully exploited. Furthermore, precious and hence expensive metals are the decisive ingredients in most cases. A team of researchers has now developed a new molecular system based on the element manganese. Manganese, as opposed to precious metals, is the third most abundant metal after iron and titanium and hence widely available and very cheap.
Published New process allows full recovery of starting materials from tough polymer composites



In a win for chemistry, inventors have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer and later recovering all of its starting materials.
Published Physicists capture the first sounds of heat 'sloshing' in a superfluid



For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.
Published Scientists develop artificial 'worm gut' to break down plastics



A team of scientists has developed an artificial 'worm gut' to break down plastics, offering hope for a nature-inspired method to tackle the global plastic pollution problem.
Published A new 'metal swap' method for creating lateral heterostructures of 2D materials



Heterostructures of two-dimensional materials have unique properties. Among them, lateral heterostructures, which can be used to make electronic devices, are challenging to synthesize. To address this, researchers used a new transmetallation technique to fabricate heterostructures with in-plane heterojunctions using Zn3BHT coordination nanosheet. This simple and powerful method enables the fabrication of ultrathin electronic devices for ultralarge-scale integrated circuits, marking a significant step forward for 2D materials research.
Published BESSY II: Molecular orbitals determine stability



Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. A team has now analyzed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.
Published Spent hemp biomass: A feed use that supports milk production in dairy cows



A new study explores whether the plentiful, fibrous byproduct of CBD production holds potential promise as a nutritious, efficiency-boosting feed ingredient for the dairy sector
Published Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products



Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe



An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published Ancient Australian air-breathing fish from 380 million years ago



The rivers of Australia, which once flowed across its now dry interior, used to host a range of bizarre animals -- including a sleek predatory lobe-finned fish with large fangs and bony scales. The newly described fossil fish discovered in remote fossil fields west of Alice Springs has been named Harajicadectes zhumini by palaeontologists.
Published Chemists decipher reaction process that could improve lithium-sulfur batteries



Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.
Published Solving an age-old mystery about crystal formation



A crystals expert has published an answer to how crystals are formed and how molecules become a part of them, solving an age-old mystery about crystal formation.
Published Mystery of moths' warning sound production explained in new study



The workings of the ultrasonic warning sounds produced by the wings of a species of moth have been revealed.
Published Unveiling the generation principles of charged particles 'trion' in 2D semiconductor



Researchers pioneer dynamic manipulation and the generation principles of trion at the nanoscale using tip-enhanced cavity-spectroscopy.
Published Scientists 'break the mould' by creating new colors of 'blue cheese'



Experts have discovered how to create different colors of blue cheese. After discovering how the classic blue-green veining is created, a team of experts were able to create a variety of different fungal strains that could be used to make cheese with colors ranging from white to yellow-green to red-brown-pink and light and dark blues.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.