Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Offbeat: Paleontology and Archeology
Published Crocodile family tree mapped: New light shed on croc evolution



Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions



An international multidisciplinary team consisting of solar physicists, geophysicists, and historians from nine countries analysed observations of an extreme solar-terrestrial storm reported in historical records from February 1872. Their findings confirm that a moderate sunspot group triggered one of the largest magnetic storms ever recorded, almost covering the entire night sky with colourful aurorae in both hemispheres. If such an extreme storm occurred today, it would severely disrupt modern technological infrastructure. Their study emphasizes the importance of looking at historical records in light of modern scientific knowledge.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published Researchers reveal new process for making anhydride chemical compounds



A collaborative research team has discovered a new process for making anhydrides that promises improvements in costs and sustainability.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published Progress toward improved vaccines



To ensure that vaccines provide strong and lasting immunization, it is often necessary to supplement the actual vaccine (antigen) with additives that stimulate the immune system: adjuvants. Today, only a few substances have been approved for use as adjuvants. A research team has now introduced a spectrum of potential adjuvants. They started with the immune stimulant ?-glactosyl ceramide (?-GalCer) and synthesized many different variants from a set of four building blocks.
Published Durable plastic pollution easily, cleanly degrades with new catalyst



Found in fishing nets, carpet, clothing, Nylon-6 is a major contributor to plastic pollution, including ocean pollution. Now, chemists have developed a new catalyst that quickly, cleanly and completely breaks down Nylon-6 in a matter of minutes -- without generating harmful byproducts. Even better: The process does not require toxic solvents, expensive materials or extreme conditions, making it practical for everyday applications. In experiments, the new process recovered 99% of the polymer's building blocks, which can then be upcycled into higher-value products.
Published Unknown animals were leaving bird-like footprints in Late Triassic Southern Africa



Ancient animals were walking around on bird-like feet over 210 million years ago, according to a new study.
Published Artificial intelligence paves way for new medicines



Researchers have developed an AI model that can predict where a drug molecule can be chemically altered.
Published Greener solution powers new method for lithium-ion battery recycling



Used lithium-ion batteries from cell phones, laptops and a growing number of electric vehicles are piling up, but options for recycling them remain limited mostly to burning or chemically dissolving shredded batteries. Researchers have improved on approaches that dissolve the battery in a liquid solution in order to reduce the amount of hazardous chemicals used in the process. This simple, efficient and environmentally-friendly solution overcomes the main obstacles presented by previous approaches.
Published How shifting climates may have shaped early elephants' trunks



Researchers have provided new insights into how ancestral elephants developed their dextrous trunks. A study of the evolution of longirostrine gomphotheres, an ancestor of the modern day elephant, suggests moving into open-land grazing helped develop their coiling and grasping trunks.
Published Compact accelerator technology achieves major energy milestone



Researchers have demonstrated a compact particle accelerator less than 20 meters long that produces an electron beam with an energy of 10 billion electron volts (10 GeV). There are only two other accelerators currently operating in the U.S. that can reach such high electron energies, but both are approximately 3 kilometers long. This type of accelerator is called a wakefield laser accelerator.
Published Was 'witchcraft' in the Devil's Church in Koli based on acoustic resonance? The crevice cave has a unique soundscape



The national park of Koli in eastern Finland is home to a famous, 34-metre-long crevice cave known as Pirunkirkko, or Devil's Church in English. A new study investigates the acoustics of the Devil's Church and explores whether the acoustic properties of the cave could explain the beliefs associated with it, and why it was chosen as a place for activities and rituals involving sound.
Published Chemists use oxygen, copper 'scissors' to make cheaper drug treatments possible



Researchers have devised a way to produce chemicals used in medicine and agriculture for a fraction of the usual cost. Using oxygen as a reagent and copper as a catalyst to break organic molecules' carbon-carbon bonds and convert them into amines, which are widely used in pharmaceuticals. Traditional metal catalysis uses expensive metals such as platinum, silver, gold and palladium, but the researchers used oxygen and copper -- an abundant base metal.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published Discovery of structural regularity hidden in silica glass



Glass is a fundamental material. Yet its atomic structure still baffles scientists to this day. Researchers have developed a new way to quantify ring shapes in chemically bonded networks of glass, chipping away at some of the mysteries behind glass's atomic structure.
Published Trilobites rise from the ashes to reveal ancient map



Ten newly discovered species of trilobites, hidden for 490 million years in a little-studied part of Thailand, could be the missing pieces in an intricate puzzle of ancient world geography.
Published Effect of aerosol particles on clouds and the climate captured better



Global measurements and model calculations show that the complex relationship between the chemistry and climate impact of aerosol particles can be successfully captured by a simple formula.
Published AI finds formula on how to predict monster waves



Using 700 years' worth of wave data from more than a billion waves, scientists have used artificial intelligence to find a formula for how to predict the occurrence of these maritime monsters. Long considered myth, freakishly large rogue waves are very real and can split apart ships and even damage oil rigs.