Showing 20 articles starting at article 21

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

New technique prints metal oxide thin film circuits at room temperature      (via sciencedaily.com)     Original source 

Researchers have demonstrated a technique for printing thin metal oxide films at room temperature, and have used the technique to create transparent, flexible circuits that are both robust and able to function at high temperatures.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Enhancing electron transfer for highly efficient upconversion OLEDs      (via sciencedaily.com)     Original source 

Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Scientists create material that can take the temperature of nanoscale objects      (via sciencedaily.com)     Original source 

Scientists recently discovered a one-dimensional nanoscale material whose color changes as temperature changes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Exploring the structures of xenon-containing crystallites      (via sciencedaily.com)     Original source 

Noble gases have a reputation for being unreactive, inert elements, but more than 60 years ago Neil Bartlett demonstrated the first way to bond xenon. He created XePtF6, an orange-yellow solid. Because it's difficult to grow sufficiently large crystals that contain noble gases, some of their structures -- and therefore functions -- remain elusive. Now, researchers have successfully examined tiny crystallites of noble gas compounds. They report structures of multiple xenon compounds.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists achieve more than 98% efficiency removing nanoplastics from water      (via sciencedaily.com)     Original source 

Linked to cardiovascular and respiratory diseases in people, nanoplastics continue to build up, largely unnoticed, in the world's bodies of water. The challenge remains to develop a cost-effective solution to get rid of nanoplastics while leaving clean water behind. That's where Mizzou comes in. Recently, researchers created a new liquid-based solution that eliminates more than 98% of these microscopic plastic particles from water.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize plant-derived molecules that hold potential as pharmaceuticals      (via sciencedaily.com)     Original source 

Chemists developed a way to synthesize complex molecules called oligocyclotryptamines, originally found in plants, which could hold potential as antibiotics, analgesics, or anticancer drugs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology
Published

Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated      (via sciencedaily.com)     Original source 

A team has reported the first demonstration of selective electrochemical separation driven by halogen bonding. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets -- such as halides, oxyanions, and even organic molecules -- from organic solutions, a feature that has important implications for pharmaceuticals and chemical synthesis processes.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy      (via sciencedaily.com)     Original source 

Scientists have made a groundbreaking discovery in the field of nanotechnology. They have developed a novel microscopy method that allows for the unprecedented visualization of nanostructures and their optical properties.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General
Published

Innovative study unveils a new path in green chemistry      (via sciencedaily.com)     Original source 

Researchers have introduced a new advancement in the fight against climate change. Their study showcases a novel method for understanding the mechanisms of carbon dioxide re-utilization leading to fuels and chemicals. This work paves the road for the further optimization of this catalytic process driven by renewable electricity.

Chemistry: Inorganic Chemistry Computer Science: General Physics: General Physics: Optics
Published

Wearable display tech: Full-color fiber LEDs based on perovskite quantum wires      (via sciencedaily.com)     Original source 

A research team has developed full-color fiber light-emitting diodes utilizing perovskite quantum wires (PeQWs), paving the way for innovative wearable lighting and display devices.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Technology
Published

Increasing solid-state electrolyte conductivity and stability using helical structure      (via sciencedaily.com)     Original source 

Solid-state electrolytes have been explored for decades for use in energy storage systems and in the pursuit of solid-state batteries. These materials are safer alternatives to the traditional liquid electrolyte -- a solution that allows ions to move within the cell -- used in batteries today. However, new concepts are needed to push the performance of current solid polymer electrolytes to be viable for next generation materials.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Pioneering plasma-catalytic process for CO2 hydrogenation to methanol under ambient conditions      (via sciencedaily.com)     Original source 

A research team reports a pioneering plasma-catalytic process for the hydrogenation of CO2 to methanol at room temperature and atmospheric pressure. This breakthrough addresses the limitations of traditional thermal catalysis, which often requires high temperatures and pressures, resulting in low CO2 conversion and methanol yield.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

3D laser printing with bioinks from microalgae      (via sciencedaily.com)     Original source 

Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

New technology uses light to engrave erasable 3D images      (via sciencedaily.com)     Original source 

Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Finding pearls in the mud: Eco-friendly tungsten recovery from semiconductor waste      (via sciencedaily.com)     Original source 

Semiconductor industry waste is typically seen as a costly disposal problem and an environmental hazard. But what if this waste could be transformed into a valuable resource? In an exciting development, researchers have unveiled an eco-friendly method to extract rare metals from semiconductor waste. This innovative approach not only recovers precious tungsten but also assesses its economic viability, offering a sustainable solution for waste management in the tech industry.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists develop new sustainable reaction for creating unique molecular building blocks      (via sciencedaily.com)     Original source 

Polymers can be thought of like trains: Just as a train is composed of multiple cars, polymers are made up of multiple monomers, and the couplings between the train cars are similar to the chemical bonds that link monomers together. While polymers have myriad applications -- from drug delivery to construction materials -- their structures and functions are restricted by the chemically similar monomer building blocks they're composed of. Now, chemists have developed a new reaction to create unique monomers in a controlled way. This reaction, which uses nickel as a catalyst, ultimately enables scientists to create polymers with unique and modifiable properties for drug delivery, energy storage, microelectronics and more.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breakthrough in molecular control: New bioinspired double helix with switchable chirality      (via sciencedaily.com)     Original source 

The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Forever chemical pollution can now be tracked      (via sciencedaily.com)     Original source 

Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Advanced chelators offer efficient and eco-friendly rare earth element recovery      (via sciencedaily.com)     Original source 

The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Concept for efficiency-enhanced noble-metal catalysts      (via sciencedaily.com)     Original source 

The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.