Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Geoscience: Severe Weather
Published Researchers step closer to mimicking nature's mastery of chemistry



In nature, organic molecules are either left- or right-handed, but synthesizing molecules with a specific 'handedness' in a lab is hard to do. Make a drug or enzyme with the wrong 'handedness,' and it just won't work. Now chemists are getting closer to mimicking nature's chemical efficiency through computational modeling and physical experimentation.
Published Dry-cleaning fluid becomes a synthetic chemist's treasure



The widely used dry-cleaning and degreasing solvent perc can be converted to useful chemicals by a new clean, safe and inexpensive procedure. The discovery using on-demand UV activation may open the path to upcycling perc and thus contribute to a more sustainable society.
Published Scientists discover how ultraviolet light degrades coronavirus



New research has revealed how light can be used to destroy infectious coronavirus particles that contaminate surfaces. Scientists are interested in how environments, such as surgeries, can be thoroughly disinfected from viruses such as SARS-CoV-2 that caused the COVID-19 pandemic.
Published 'Carbon vault' peat suffers greatly from drought



Peatlands are affected more by drought than expected. This is concerning, as these ecosystems are an important ally in the fight against climate change. Following long periods of drought, peat is able to absorb little to no extra carbon (CO2). Increasing biodiversity also does little to make peat more drought-resilient.
Published Inspired by Greek mythology, this potential drug shows promise for vanquishing Parkinson's RNA in early studies



A new discovery takes its inspiration from Greek mythology. The compound is described as a chimera, because it battles a toxic cause of Parkinson's in two ways.
Published Chemists develop new approach to inserting single carbon atoms



Chemists have presented a new approach in which a single carbon atom is inserted into the carbon skeleton of cyclic compounds in order to adjust the ring size. The method could be relevant, for example, for the production of active ingredients in new pharmaceutical products.
Published Global study of extreme drought impacts on grasslands and shrublands



A global study shows that the effects of extreme drought -- which is expected to increase in frequency with climate change -- has been greatly underestimated for grasslands and shrublands. The findings quantify the impact of extreme short-term drought on grassland and shrubland ecosystems across six continents with a level of detail that was not previously possible. It is the first time an experiment this extensive has been undertaken to generate a baseline understanding of the potential losses of plant productivity in these vital ecosystems.
Published Revolutionizing stable and efficient catalysts with Turing structures for hydrogen production



Hydrogen energy has emerged as a promising alternative to fossil fuels, offering a clean and sustainable energy source. However, the development of low-cost and efficient catalysts for hydrogen evolution reaction remains a crucial challenge. Scientists have recently developed a novel strategy to engineer stable and efficient ultrathin nanosheet catalysts by forming Turing structures with multiple nanotwin crystals. This innovative discovery paves the way for enhanced catalyst performance for green hydrogen production.
Published Engineers invent octopus-inspired technology that can deceive and signal



With a split-second muscle contraction, the greater blue-ringed octopus can change the size and color of the namesake patterns on its skin for purposes of deception, camouflage and signaling. Researchers have drawn inspiration from this natural wonder to develop a technological platform with similar capabilities for use in a variety of fields, including the military, medicine, robotics and sustainable energy.
Published High-performance stretchable solar cells



Engineers have succeeded in implementing a stretchable organic solar cell by applying a newly developed polymer material that demonstrated the world's highest photovoltaic conversion efficiency (19%) while functioning even when stretched for more than 40% of its original state. This new conductive polymer has high photovoltaic properties that can be stretched like rubber. The newly developed polymer is expected to play a role as a power source for next-generation wearable electronic devices.
Published Path-following performance of autonomous ships



With recent requirements for reducing greenhouse gas emissions of autonomous ships, an emerging body of research is focused on assessing the path-following performance of maritime autonomous surface ships (MASS) at low speeds under adverse weather conditions. To combat the poor accuracy of traditional methods, in a new study, researchers investigated the path-following performance of MASS using a free-running computational fluid dynamics model. Their findings can help ensure safer autonomous navigation with reduced propulsion power.
Published Using electricity, scientists find promising new method of boosting chemical reactions



Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.
Published New method illuminates druggable sites on proteins



Scientists develop a new, high-resolution technique for finding potential therapeutic targets on proteins in living cells. The findings could lead to more targeted therapeutics for nearly any human disease.
Published Aptamers: lifesavers; ion shields: aptamer guardians



Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.
Published Unraveling the mysteries of fog in complex terrain



While fog presents a major hazard to transportation safety, meteorologists have yet to figure out how to forecast it with the precision they have achieved for precipitation, wind and other stormy events. This is because the physical processes resulting in fog formation are extremely complex, Now researchers report their findings from an intensive study centered on a northern Utah basin and conceived to investigate the life cycle of cold fog in mountain valleys.
Published Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices



A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published New material allows for better hydrogen-based batteries and fuel cells



Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Finding new ways to adapt to a growing weather threat



Research reveals a steady increase in the number of people at risk from tropical cyclones and the number of days per year these potentially catastrophic storms threaten health and livelihoods. The findings could help relief agencies, development banks, and other organizations plan more effective strategies for mitigating extreme weather impacts.