Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology Offbeat: Earth and Climate Offbeat: General
Published

Two epicenters led to Japan's violent Noto earthquake on New Year's Day      (via sciencedaily.com)     Original source 

The 7.5- magnitude earthquake beneath Japan's Noto Peninsula on Jan. 1, 2024, occurred when a 'dual-initiation mechanism' applied enough energy from two different locations to break through a fault barrier -- an area that locks two sides of a fault in place and absorbs the energy of fault movement, slowing it down or stopping it altogether.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

DNA tech offers both data storage and computing functions      (via sciencedaily.com)     Original source 

Researchers have demonstrated a technology capable of a suite of data storage and computing functions -- repeatedly storing, retrieving, computing, erasing or rewriting data -- that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Catalyst for 'one-step' conversion of methane to methanol      (via sciencedaily.com)     Original source 

Scientists have engineered a highly selective catalyst that can convert methane, a major component of natural gas, into methanol, an easily transportable liquid fuel, in a single, one-step reaction. This direct process for methane-to-methanol conversion runs at a temperature lower than required to make tea and exclusively produces methanol without additional byproducts.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Extraterrestrial chemistry with earthbound possibilities      (via sciencedaily.com)     Original source 

Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.

Archaeology: General Geoscience: Earth Science Geoscience: Geography Geoscience: Geology Geoscience: Landslides Geoscience: Oceanography
Published

New study reveals devastating power and colossal extent of a giant underwater avalanche off the Moroccan coast      (via sciencedaily.com)     Original source 

New research has revealed how an underwater avalanche grew more than 100 times in size causing a massive trail of destruction as it traveled 2000km across the Atlantic Ocean seafloor off the North West coast of Africa. Researchers provide an unprecedented insight into the scale, force and impact of one of nature's mysterious phenomena, underwater avalanches.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First visualization of valence electrons reveals fundamental nature of chemical bonding      (via sciencedaily.com)     Original source 

The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Quality control: Neatly arranging crystal growth to make fine thin films      (via sciencedaily.com)     Original source 

Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology Physics: General
Published

Molecular wires with a twist      (via sciencedaily.com)     Original source 

Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.

Anthropology: Early Humans Anthropology: General Geoscience: Geology Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Fossil hotspots in Africa obscure a more complete picture of human evolution      (via sciencedaily.com)     Original source 

A new study shows how the mismatch between where fossils are preserved and where humans likely lived may influence our understanding of early human evolution.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

'Molecular compass' points way to reduction of animal testing      (via sciencedaily.com)     Original source 

Machine learning models have become increasingly popular for risk assessment of chemical compounds. However, they are often considered 'black boxes' due to their lack of transparency. To increase confidence in these models, researchers proposed carefully identifying the areas of chemical space where these models are weak. They developed an innovative software tool for this purpose, and the results of this research approach have just been published.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A new reaction to enhance aromatic ketone use in chemical synthesis      (via sciencedaily.com)     Original source 

Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Investigating the interplay of folding and aggregation in supramolecular polymer systems      (via sciencedaily.com)     Original source 

Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

Preservation of organic carbon in the ocean floor      (via sciencedaily.com)     Original source 

The preservation of organic carbon in marine sediments has long been a key question remaining unclear in understanding the long-term carbon cycling on Earth. Recently, scientists have gained new insights into the dynamic cycling of iron-bound organic carbon in subseafloor sediments.

Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Geology
Published

Decoding mysterious seismic signals      (via sciencedaily.com)     Original source 

Geophysicists find link between seismic waves called PKP precursors and anomalies in Earth's mantle that are associated with hotspots associated with volcanism on the surface.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Geology Paleontology: Climate Paleontology: General
Published

Scottish and Irish rocks confirmed as rare record of 'snowball Earth'      (via sciencedaily.com)     Original source 

The study found that the Port Askaig Formation, composed of layers of rock up to 1.1 km thick, was likely laid down between 662 to 720 million years ago during the Sturtian glaciation -- the first of two global freezes thought to have triggered the development of complex, multicellular life.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Nanotechnology
Published

Research provides a roadmap for improving electrochemical performance      (via sciencedaily.com)     Original source 

A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Enhancing electron transfer for highly efficient upconversion OLEDs      (via sciencedaily.com)     Original source 

Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geochemistry Geoscience: Geology
Published

Researchers unveil mysteries of ancient Earth      (via sciencedaily.com)     Original source 

A team of researchers has made strides in understanding the formation of massif-type anorthosites, enigmatic rocks that only formed during the middle part of Earth's history. These plagioclase-rich igneous rock formations, which can cover areas as large as 42,000 square kilometers and host titanium ore deposits, have puzzled scientists for decades due to conflicting theories about their origins.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize plant-derived molecules that hold potential as pharmaceuticals      (via sciencedaily.com)     Original source 

Chemists developed a way to synthesize complex molecules called oligocyclotryptamines, originally found in plants, which could hold potential as antibiotics, analgesics, or anticancer drugs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology
Published

Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated      (via sciencedaily.com)     Original source 

A team has reported the first demonstration of selective electrochemical separation driven by halogen bonding. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets -- such as halides, oxyanions, and even organic molecules -- from organic solutions, a feature that has important implications for pharmaceuticals and chemical synthesis processes.