Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues
Published

New approach shows hydrogen can be combined with electricity to make pharmaceutical drugs      (via sciencedaily.com) 

The world needs greener ways to make chemicals. In a new study, researchers demonstrate one potential path toward this goal by adapting hydrogen fuel cell technologies.

Biology: Microbiology Biology: Molecular Chemistry: Organic Chemistry Physics: Optics
Published

Research team developing a nano-sized force sensor and improving high-precision microscopy technology      (via sciencedaily.com) 

Recent research in cell biology highlights groundbreaking results. An international team of researchers have recently established a tool they developed to study the mechanics of the cell. The tool can be used to study the inner forces of the cell, for example, the stretching of the nuclear membrane. The microscopic force sensor, only about 0.00002 mm long, is constructed of exotic ingredients such as spider web protein parts, fluorescent proteins from jellyfish, and antibodies from alpaca. In addition, the multidisciplinary team of researchers has developed further the sensitivity of super-resolution microscopy technique.

Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues
Published

Groundbreaking green propane production method      (via sciencedaily.com) 

New research reveals a promising breakthrough in green energy: an electrolyzer device capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable.

Anthropology: Cultures
Published

Spear thrower weapon use by prehistoric females equalized the division of labor while hunting      (via sciencedaily.com)     Original source 

A new study has demonstrated that the atlatl (i.e. spear thrower) functions as an 'equalizer', a finding which supports women's potential active role as prehistoric hunters.

Anthropology: Cultures Anthropology: General Archaeology: General Biology: Molecular Paleontology: Fossils
Published

Ancient metal cauldrons give us clues about what people ate in the Bronze Age      (via sciencedaily.com)     Original source 

Archaeologists have long been drawing conclusions about how ancient tools were used by the people who crafted them based on written records and context clues. But with dietary practices, they have had to make assumptions about what was eaten and how it was prepared. A new study analyzed protein residues from ancient cooking cauldrons and found that the people of Caucasus ate deer, sheep, goats, and members of the cow family during the Maykop period (3700--2900 BCE).

Biology: Molecular Chemistry: Organic Chemistry
Published

Scientists reveal how sensory protein changes shape with nanometer resolution      (via sciencedaily.com) 

The sensory receptor PIEZO1 changes shape in response to mechanical stimuli. The super high-resolution microscopy technology used in this discovery is a breakthrough in enabling protein structures to be studied within the cellular environment.

Anthropology: Cultures Anthropology: General Archaeology: General Paleontology: Fossils
Published

Unveiling Japan's ancient practice of cranial modification: The case of the Hirota people in Tanegashima      (via sciencedaily.com)     Original source 

Cranial modification is a form of body alteration where the head is pressed or bound to permanently deform the skull. The practice has been reported across various cultures throughout history. Researchers report that the Hirota people -- who lived on the southern Japanese island of Tanegashima between the 3rd to 7th century CE -- also conducted cranial modification, with indication that both males and females performed the practice.

Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Decoding how molecules 'talk' to each other to develop new nanotechnologies      (via sciencedaily.com) 

Scientists recreate and compare molecular languages at the origin of life -- opening new doors for the development of novel nanotechnologies.

Chemistry: Organic Chemistry
Published

Researchers develop versatile and low-cost technology for targeted long-read RNA sequencing      (via sciencedaily.com) 

In a development that could accelerate the discovery of new diagnostics and treatments, researchers have developed a versatile and low-cost technology for targeted sequencing of full-length RNA molecules. The technology, called TEQUILA-seq, is highly cost-effective compared to commercially available solutions for targeted RNA sequencing and can be adapted for different research and clinical purposes.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Gold buckyballs, oft-used nanoparticle 'seeds' are one and the same      (via sciencedaily.com) 

Chemists have discovered that tiny gold 'seed' particles, a key ingredient in one of the most common nanoparticle recipes, are one and the same as gold buckyballs, 32-atom spheres that are cousins of the Nobel Prize-winning carbon buckyballs discovered in 1985.

Chemistry: Organic Chemistry
Published

Weaker transcription factors are better when they work together      (via sciencedaily.com) 

Bioengineers have developed a generalizable method to address 'off-target' binding, a significant problem in the field of synthetic biology. Taking a cue from nature, the researchers showed they could all but eliminate off-target gene activation by designing weak transcription factors that cooperatively assemble.

Chemistry: Organic Chemistry Energy: Technology Geoscience: Environmental Issues
Published

Researchers design efficient iridium catalyst for hydrogen generation      (via sciencedaily.com) 

Proton exchange membrane water electrolyzers converts surplus electric energy into transportable hydrogen energy as a clean energy solution. However, slow oxygen evolution reaction rates and high loading levels of expensive metal oxide catalysts limit its practical feasibility. Now, researchers have developed a new tantalum oxide-supported iridium catalyst that significantly boosts the oxygen evolution reaction speed. Additionally, it shows high catalytic activity and long-term stability in prolonged single cell operation.

Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Nanoscale material offers new way to control fire      (via sciencedaily.com) 

High-temperature flames are used to create a wide variety of materials -- but once you start a fire, it can be difficult to control how the flame interacts with the material you are trying to process. Researchers have now developed a technique that utilizes a molecule-thin protective layer to control how the flame's heat interacts with the material -- taming the fire and allowing users to finely tune the characteristics of the processed material.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Physics: Optics
Published

Chromium replaces rare and expensive noble metals      (via sciencedaily.com)     Original source 

Expensive noble metals often play a vital role in illuminating screens or converting solar energy into fuels. Now, chemists have succeeded in replacing these rare elements with a significantly cheaper metal. In terms of their properties, the new materials are very similar to those used in the past.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Chemistry: Organic Chemistry Physics: Optics
Published

Researchers 'film' novel catalyst at work      (via sciencedaily.com) 

A novel catalysis scheme enables chemical reactions that were previously virtually impossible. The method is also environmentally friendly and does not require rare and precious metals. The researchers recorded the exact course of the catalysis in a kind of high-speed film. They did this using special lasers that can make processes visible that last only fractions of a billionth of a second. The results allow them to further optimize the catalyst.

Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Making molecules dance to our tune reveals what drives their first movements      (via sciencedaily.com) 

Bringing ultrafast physics to structural biology has revealed the dance of molecular 'coherence' in unprecedented clarity.

Chemistry: Organic Chemistry
Published

Materials research: biocatalytic foams of tremendous stability and activity      (via sciencedaily.com) 

Industrial biocatalysis with enzymes is deemed to be a 'game changer' in the development of a sustainable chemical industry. Enzymes can be used to synthesize an impressive range of complex molecules, including pharmaceutical substances, under environmentally compatible conditions. Researchers have now developed a new class of materials by producing enzyme foams of tremendous stability and activity.

Anthropology: Cultures
Published

New research links early Europeans' cultural and genetic development over several thousand years      (via sciencedaily.com)     Original source 

A new DNA study has nuanced the picture of how different groups intermingled during the European Stone Age, but also how certain groups of people were actually isolated. Researchers produced new genetic data from 56 Central and Eastern European individuals from the Stone Age.

Chemistry: Organic Chemistry Engineering: Graphene
Published

Human scent receptors could help 'sniff out' nerve gases in new sensor      (via sciencedaily.com) 

By some estimates, the human nose can detect up to a trillion different smells with its hundreds of scent receptors. But even just catching a quick whiff of certain chemicals known as nerve agents can be lethal, even in tiny amounts. Researchers have now developed a sensitive and selective nerve gas sensor using these human scent receptors. It reliably detected a substitute for deadly sarin gas in simulated tests.