Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Offbeat: Paleontology and Archeology
Published Scientists use peroxide to peer into metal oxide reactions



Researchers to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Toward tunable molecular switches from organic compounds



Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Long-forgotten equation provides new tool for converting carbon dioxide



To manage atmospheric carbon dioxide and convert the gas into a useful product, scientists have dusted off an archaic -- now 120 years old -- electrochemical equation.
Published How were amino acids, one of the key building blocks of life, formed before the origin of life on Earth?



The amino acid abundances of two Ryugu particles were measured and compared with their rocky components. The results demonstrate the important role that water plays in the formation of amino acids on the giant precursors of asteroids like Ryugu. Our solar system formed from a molecular cloud, which was composed of gas and dust that was emitted into the interstellar medium (ISM), a vast space between stars. On collapse of the molecular cloud, the early sun was formed, with a large disk of gas and dust orbiting it. The dusty material collided to produce rocky material that would eventually grow in size to give large bodies called planetesimals.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Scientists use computational modeling to design 'ultrastable' materials



Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.
Published Discovery of crucial clue to accelerate development of carbon-neutral porous materials



A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.
Published Major storage capacity in water-based batteries



Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.
Published One of Swedish warship Vasa's crew was a woman


When the human remains found on board the Swedish warship Vasa (1628) were investigated, it was determined that the skeleton designated G was a man. New research now shows that the skeleton is actually from a woman. About thirty people died when Vasa sank on its maiden voyage in Stockholm, 1628. We cannot know who most of them were, only one person is named in the written sources. When the ship was raised in 1961 it was the scene of a comprehensive archaeological excavation, in which numerous human bones were found on board and examined.
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.
Published Plastic transistor amplifies biochemical sensing signal



New transistor technology boosts the body's electrochemical signals by 1,000 times, enabling diagnostic and disease-monitoring implants.
Published Yak milk consumption among Mongol Empire elites


For the first time, researchers have pinpointed a date when elite Mongol Empire people were drinking yak milk, according to a new study.
Published New nanoparticles can perform gene-editing in the lungs



A new type of nanoparticle can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins. Researchers hope to use them to develop new treatments for cystic fibrosis and other lung diseases.
Published Researchers use 21st century methods to record 2,000 years of ancient graffiti in Egypt


Researchers are learning more about ancient graffiti -- and their intriguing comparisons to modern graffiti -- as they produce a state-of-the-art 3D recording of the Temple of Isis in Philae, Egypt.
Published AI predicts enzyme function better than leading tools



A new artificial intelligence tool can predict the functions of enzymes based on their amino acid sequences, even when the enzymes are unstudied or poorly understood. Researchers said the AI tool, dubbed CLEAN, outperforms the leading state-of-the-art tools in accuracy, reliability and sensitivity. Better understanding of enzymes and their functions would be a boon for research in genomics, chemistry, industrial materials, medicine, pharmaceuticals and more.
Published Predatory dinosaurs such as T. rex sported lizard-like lips


A new study suggests that predatory dinosaurs, such as Tyrannosaurus rex, did not have permanently exposed teeth as depicted in films such as Jurassic Park, but instead had scaly, lizard-like lips covering and sealing their mouths.
Published Ancient giant amphibians swam like crocodiles 250 million years ago


Ancient 2m-long amphibians swam like crocodiles long before true crocodiles existed, according to a new study.
Published Mimicking biological enzymes may be key to hydrogen fuel production


An ancient biological enzyme known as nickel-iron hydrogenase may play a key role in producing hydrogen for a renewables-based energy economy, researchers said. Careful study of the enzyme has led chemists to design a synthetic molecule that mimics the hydrogen gas-producing chemical reaction performed by the enzyme.
Published Chemists design new molecule, with oxygen as the star of the show


Chemists have achieved a new feat in the realm of chemical design and synthesis: They've helped create the first example of a synthetic molecule, with an asymmetric oxygen atom as its centerpiece, that remains stable and nonreactive -- despite this type of molecule's tendency in nature to be touchy and short-lived. What makes this feat unique is that the new molecule is chiral, which means it has a non-superimposable mirror image.