Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Chemistry: Thermodynamics
Published Ultra-hard material to rival diamond discovered



Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.
Published Spinning up control: Propeller shape helps direct nanoparticles



Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.
Published Scientists 3D print self-heating microfluidic devices



A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.
Published Permselectivity reveals a cool side of nanopores



Researchers investigated the thermal energy changes across nanopores that allow the selective flow of ions. Switching off the flow of ions in one direction led to a cooling effect. The findings have applications in nanofluidic devices and provide insight into the factors governing ion channels in cells. The nanopore material could be tailored to tune the cooling and arrays could be produced to scale up the effect.
Published Eco-friendly technologies for plastic production and biodegradation?



A new article covering an overview and trends of plastic production and degradation technology using microorganisms has been published. Eco-friendly and sustainable plastic production and degradation technology using microorganisms as a core technology to achieve a plastic circular economy was presented.
Published New conductive, cotton-based fiber developed for smart textiles



A single strand of newly developed fiber has the flexibility of cotton and the electric conductivity of the polymer, polyaniline. The new material has shown good potential for wearable e-textiles. The researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas. While intrinsically conductive, polyaniline is brittle and by itself, cannot be made into a fiber for textiles. To solve this, the researchers dissolved cotton cellulose from recycled t-shirts into a solution and the conductive polymer into another separate solution.
Published Researchers combine biopolymers derived from the ocean to replace synthetic plastic films



Crustacean and seaweed materials combined in a unique way could provide a sustainable alternative to plastic films.
Published Polyethylene waste could be a thing of the past



Experts have developed a way of using polyethylene waste (PE) as a feedstock and converted it into valuable chemicals, via light-driven photocatalysis. PE is the most widely used plastic in the world including for daily food packaging, shopping bags and reagent bottles, and the researchers say that while recycling of PE is still in early development, it could be an untapped resource for re-use.
Published First observation of structures resulting from 3D domain swapping in antibody light chains



Antibodies hold promise as therapeutic agents. However, their tendency to aggregate poses significant challenges to drug development. In a groundbreaking study, researchers now provide novel insights into the structure formed due to 3D domain swapping of the antibody light chain, the part of the antibody contributing to antigen binding. Their findings are expected to lead to improvements in antibody quality and the development of novel drugs.
Published A fork in the 'rhod': Researchers unveil comprehensive collection of rhodamine-based fluorescent dyes



After more than a decade of developing fluorescent probes, a research team has now released the culmination of their years of work: A comprehensive collection of rhodamine-based dyes, the novel chemistry they developed to synthesize them and insights that provide a roadmap for designing future probes.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Catalyst for electronically controlled C--H functionalization



Scientists chipping away at one of the great challenges of metal-catalyzed C--H functionalization with a new method that uses a cobalt catalyst to differentiate between bonds in fluoroarenes, functionalizing them based on their intrinsic electronic properties. And their method is fast -- comparable in speed to those that rely on iridium.
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published Boiled bubbles jump to carry more heat



The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.
Published Researchers decode aqueous amino acid's potential for direct air capture of CO2



Scientists have made a significant stride toward understanding a viable process for direct air capture, or DAC, of carbon dioxide from the atmosphere. This DAC process is in early development with the aim of achieving negative emissions, where the amount of carbon dioxide removed from the envelope of gases surrounding Earth exceeds the amount emitted.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published Researchers reveal new process for making anhydride chemical compounds



A collaborative research team has discovered a new process for making anhydrides that promises improvements in costs and sustainability.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.