Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Chemistry: Thermodynamics
Published Fresh light on the path to net zero



Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.
Published Pioneering measurement of the acidity of ionic liquids using Raman spectroscopy



A study has made it possible to estimate experimentally the energy required to transfer protons from water to ionic liquids.
Published 'Miracle' filter turns store-bought LEDs into spintronic devices



Scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field. Researchers replaced the electrodes of store-bought LEDs with a patented spin filter made from hybrid organic-inorganic halide perovskite.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Engineer develops technique that enhances thermal imaging and infrared thermography for police, medical, military use



A new method to measure the continuous spectrum of light is set to improve thermal imaging and infrared thermography.
Published Next-gen cooling system to help data centers become more energy efficient



Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published Tackling industrial emissions begins at the chemical reaction



Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.
Published Researchers discover faster, more energy-efficient way to manufacture an industrially important chemical



The reactivity of zirconium on silicon nitride enhances the conversion of propane into propylene, a key commodity chemical needed to make polypropylene. This finding hints at the reactivity researchers might achieve with other nontraditional catalysts.
Published Researchers develop innovative battery recycling method



A research team is tackling the environmental issue of efficiently recycling lithium ion batteries amid their increasing use.
Published A new way to make element 116 opens the door to heavier atoms



Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.
Published Drawing water from dry air



A prototype device harvests drinking water from the atmosphere, even in arid places.
Published Researchers develop more environmentally friendly and cost-effective method for soil remediation



Chemists have developed a rapid electrothermal mineralization (REM) process, which in seconds can remediate the accumulation of synthetic chemicals that can contaminate soil and the environment.
Published 3D-printed microstructure forest facilitates solar steam generator desalination



Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published A promising new method uses light to clean up forever chemicals



A room-temperature method to decompose perfluoroalkyl substances (PFASs) using visible LED light offers a promising solution for sustainable fluorine recycling and PFAS treatment.
Published Team develops safe and long-cyclable lithium metal battery for high temperatures



In recent years, batteries have become ubiquitous in consumers' daily lives. However, existing commercial battery technologies, which use liquid electrolytes and carbonaceous anodes, have certain drawbacks such as safety concerns, limited lifespan, and inadequate power density particularly at high temperatures.
Published Researchers develop new method for achieving controllable tuning and assessing instability in 2D materials for engineering applications



Two-dimensional (2D) materials have atomic-level thickness and excellent mechanical and physical properties, with broad application prospects in fields such as semiconductors, flexible devices, and composite materials.
Published Organs on demand? Scientists print voxel building blocks



Scientists are bioprinting 3D structures with a material that is a close match for human tissue, paving the way for true biomanufacturing.
Published Aluminum scandium nitride films: Enabling next-gen ferroelectric memory devices



Aluminum scandium nitride thin films could pave the way for the next generation of ferroelectric memory devices, according to a new study. Compared to existing ferroelectric materials, these films maintain their ferroelectric properties and crystal structure even after heat treatment at temperatures up to 600 C in both hydrogen and argon atmospheres. This high stability makes them ideal for high-temperature manufacturing processes under the H2-included atmosphere used in fabricating advanced memory devices.
Published 3D printing of light-activated hydrogel actuators



An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.