Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Chemistry: Thermodynamics
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published Physicists discover an exotic material made of bosons



Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.
Published Calculation shows why heavy quarks get caught up in the flow



Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published Water molecules define the materials around us



A new paper argues that materials like wood, bacteria, and fungi belong to a newly identified class of matter, 'hydration solids.' The new findings emerged from ongoing research into the strange behavior of spores, dormant bacterial cells.
Published Scientists use seaweed to create new material that can store heat for reuse



Scientists have created a new material derived from seaweed that can store heat for re-use. It could be used to capture summer sun for use in winter, or to store heat from industry that currently goes up the chimney, potentially slashing carbon emissions. The material is in the form of small beads made from alginate, which is cheap, abundant and non-toxic. It stores heat four times more efficiently than a previous material the team had developed.
Published 'Heat highways' could keep electronics cool



As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.
Published More complex than expected: Catalysis under the microscope



Usually, catalytic reactions are analyzed by checking which chemicals go into a chemical reactor and which come out. But as it turns out, in order to properly understand and optimize catalysts, much more information is necessary. Scientists developed methods to watch catalytic reactions with micrometer resolution under the microscope -- and the process is much more complex than previously thought.
Published The problems with coal ash start smaller than anyone thought



Burning coal doesn't only pollute the air. The resulting ash can leach toxic chemicals into the local environments where it's kept. New research shows that the toxicity of various ash stockpiles relies heavily on its nanoscale structures, which vary widely between sources. The results will help researchers predict which coal ash is most environmentally dangerous.
Published Buckle up! A new class of materials is here



Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.
Published Finally solved! The great mystery of quantized vortex motion



Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.
Published Flat fullerene fragments attractive to electrons



Researchers have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties.
Published Producing large, clean 2D materials made easy



An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.
Published Researchers finds a way to reduce the overheating of semiconductor devices



Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.
Published X-rays visualize how one of nature's strongest bonds breaks



The use of short flashes of X-ray light brings scientists one big step closer toward developing better catalysts to transform the greenhouse gas methane into a less harmful chemical. The result reveals for the first time how carbon-hydrogen bonds of alkanes break and how the catalyst works in this reaction.
Published Thermal energy stored by land masses has increased significantly



There are many effects of climate change. Perhaps the most broadly known is global warming, which is caused by heat building up in various parts of the Earth system, such as the atmosphere, the ocean, the cryosphere and the land. 89 percent of this excess heat is stored in the oceans, with the rest in ice and glaciers, the atmosphere and land masses (including inland water bodies). An international research team has now studied the quantity of heat stored on land, showing the distribution of land heat among the continental ground, permafrost soils, and inland water bodies. The calculations show that more than 20 times as much heat has been stored there since the 1960s, with the largest increase being in the ground.
Published You can make carbon dioxide filters with a 3D printer



Researchers demonstrated that it's possible to make carbon dioxide capture filters using 3D printing.
Published A protein mines, sorts rare earths better than humans, paving way for green tech



Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published Under pressure: Foundations of stellar physics and nuclear fusion investigated



Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.
Published Crossing the ring: New method enables C-H activation across saturated carbocycles



Chemists add another powerful tool to their 'molecular editing' toolkit for crafting pharmaceuticals and other valuable compounds.