Showing 20 articles starting at article 1
Categories: Chemistry: Organic Chemistry, Chemistry: Thermodynamics
Published Scientists propose guidelines for solar geoengineering research



To guide future research into solar geoengineering, an international group of scientists is making specific recommendations for evaluating proposals in order to identify the most feasible and legitimate scenarios for stratospheric aerosol intervention.
Published New gels could protect buildings during wildfires



Researchers have developed a sprayable gel that creates a shield to protect buildings from wildfire damage. It lasts longer and is more effective than existing commercial options.
Published DNA tech offers both data storage and computing functions



Researchers have demonstrated a technology capable of a suite of data storage and computing functions -- repeatedly storing, retrieving, computing, erasing or rewriting data -- that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.
Published Catalyst for 'one-step' conversion of methane to methanol



Scientists have engineered a highly selective catalyst that can convert methane, a major component of natural gas, into methanol, an easily transportable liquid fuel, in a single, one-step reaction. This direct process for methane-to-methanol conversion runs at a temperature lower than required to make tea and exclusively produces methanol without additional byproducts.
Published Extraterrestrial chemistry with earthbound possibilities



Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.
Published Chalk-based coating creates a cooling fabric



In the scorching heat of summer, anyone who spends time outside could benefit from a cooling fabric. While there are some textiles that reflect the sun's rays or wick heat away, current options require boutique fibers or complex manufacturing processes. But now, demonstrations of a durable chalk-based coating show it can cool the air underneath treated fabric by up to 8 degrees Fahrenheit.
Published First visualization of valence electrons reveals fundamental nature of chemical bonding



The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.
Published Quality control: Neatly arranging crystal growth to make fine thin films



Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.
Published Eco-friendly cooling device with record-breaking efficiency



Researchers have developed an eco-friendly refrigeration device with record-breaking cooling performance in the world, setting to transform industries reliant on cooling and reduce global energy use. With a boost in efficiency of over 48%, the new elastocaloric cooling technology opens a promising avenue for accelerating the commercialization of this disruptive technology and addressing the environmental challenges associated with traditional cooling systems.
Published Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator



New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.
Published Sharing risk to avoid power outages in an era of extreme weather



Heat waves, droughts, and fires place growing stress on the West's electric grid. New research suggests that more integrated management of electricity resources across the region could significantly reduce the risk of power outages and accelerate the transition to clean energy.
Published Molecular wires with a twist



Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.
Published 'Molecular compass' points way to reduction of animal testing



Machine learning models have become increasingly popular for risk assessment of chemical compounds. However, they are often considered 'black boxes' due to their lack of transparency. To increase confidence in these models, researchers proposed carefully identifying the areas of chemical space where these models are weak. They developed an innovative software tool for this purpose, and the results of this research approach have just been published.
Published A new reaction to enhance aromatic ketone use in chemical synthesis



Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.
Published Investigating the interplay of folding and aggregation in supramolecular polymer systems



Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.
Published New twist on synthesis technique promises sustainable manufacturing



Researchers developed a new method known as flash-within-flash Joule heating (FWF) that could transform the synthesis of high-quality solid-state materials, offering a cleaner, faster and more sustainable manufacturing process.
Published Revolutionizing thermoelectric technology: Hourglass-shaped materials achieve a 360% efficiency boost



A groundbreaking technology has been unveiled that improves the efficiency of thermoelectric materials, which are key in converting waste heat into electricity, by altering their geometry to resemble an hourglass. Unlike previous research that solely depended on the material properties of thermoelectric substances, this new approach is expected to have widespread applications in thermoelectric power generation.
Published Research provides a roadmap for improving electrochemical performance



A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.
Published Enhancing electron transfer for highly efficient upconversion OLEDs



Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.
Published Intelligent soft robotic clothing for automatic thermal adaptation in extreme heat



As global warming intensifies, people increasingly suffer from extreme heat. For those working in a high-temperature environment indoors or outdoors, keeping thermally comfortable becomes particularly crucial. A team has now developed thermally-insulated and breathable soft robotic clothing that can automatically adapt to changing ambient temperatures, thereby helping to ensure worker safety in hot environments.