Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Space: Astronomy
Published Scientific definition of a planet says it must orbit our sun; A new proposal would change that



The International Astronomical Union defines a planet as a celestial body that orbits the sun, is massive enough that gravity has forced it into a spherical shape, and has cleared away other objects near its orbit around the sun. Scientists now recognize the existence of thousands of planets, but the IAU definition applies only to those within our solar system. The new proposed definition specifies that the body may orbit one or more stars, brown dwarfs or stellar remnants and sets mass limits that should apply to planets everywhere.
Published Hydrogen flight looks ready for take-off with new advances



The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.
Published Dark matter in dwarf galaxy tracked using stellar motions



The qualities and behavior of dark matter, the invisible 'glue' of the universe, continue to be shrouded in mystery. Though galaxies are mostly made of dark matter, understanding how it is distributed within a galaxy offers clues to what this substance is, and how it's relevant to a galaxy's evolution.
Published The origins of dark comets



Up to 60% of near-Earth objects could be dark comets, mysterious asteroids that orbit the sun in our solar system that likely contain or previously contained ice and could have been one route for delivering water to Earth, according to a new study.
Published Strong evidence for intermediate-mass black hole in Omega Centauri



Most known black holes are either extremely massive, like the supermassive black holes that lie at the cores of large galaxies, or relatively lightweight, with a mass of under 100 times that of the Sun. Intermediate-mass black holes (IMBHs) are scarce, however, and are considered rare 'missing links' in black hole evolution.
Published Researchers show promising material for solar energy gets its curious boost from entropy



Researchers discovered a microscopic mechanism that solves in part the outstanding performance achieved by a new class of organic semiconductors known as non-fullerene acceptors (NFAs).
Published Found with Webb: A potentially habitable icy world



A international team of astronomers has made an exciting discovery about the temperate exoplanet LHS 1140 b: it could be a promising 'super-Earth' covered in ice or water.
Published Stench of a gas giant? Nearby exoplanet reeks of rotten eggs, and that's a good thing



An exoplanet infamous for its deadly weather has been hiding another bizarre feature -- it reeks of rotten eggs, according to a new study of data from the James Webb Space Telescope.
Published Fresh wind blows from historical supernova



A mysterious remnant from a rare type of supernova recorded in 1181 has been explained for the first time. Two white dwarf stars collided, creating a temporary 'guest star,' now labeled supernova (SN) 1181, which was recorded in historical documents in Japan and elsewhere in Asia. However, after the star dimmed, its location and structure remained a mystery until a team pinpointed its location in 2021. Now, through computer modeling and observational analysis, researchers have recreated the structure of the remnant white dwarf, a rare occurrence, explaining its double shock formation. They also discovered that high-speed stellar winds may have started blowing from its surface within just the past 20-30 years. This finding improves our understanding of the diversity of supernova explosions, and highlights the benefits of interdisciplinary research, combining history with modern astronomy to enable new discoveries about our galaxy.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Cool roofs are best at beating cities' heat



Painting roofs white or covering them with a reflective coating would be more effective at cooling cities like London than vegetation-covered 'green roofs,' street-level vegetation or solar panels, finds a new study led by UCL researchers.
Published Moon 'swirls' could be magnetized by unseen magmas



Mysterious, light-colored swirls on Moon's surface could be rocks magnetized by magma activity underground, laboratory experiments confirm.
Published A new pulsar buried in a mountain of data



Astronomers have discovered the first millisecond pulsar in the stellar cluster Glimpse-CO1.
Published Scientists probe chilling behavior of promising solid-state cooling material



A research team has bridged a knowledge gap in atomic-scale heat motion. This new understanding holds promise for enhancing materials to advance an emerging technology called solid-state cooling.
Published Tiny bright objects discovered at dawn of universe baffle scientists



A recent discovery by NASA's James Webb Space Telescope (JWST) confirmed that luminous, very red objects previously detected in the early universe upend conventional thinking about the origins and evolution of galaxies and their supermassive black holes.
Published Too many missing satellite galaxies found



Bringing us one step closer to solving the 'missing satellites problem,' researchers have discovered two new satellite galaxies.
Published New class of Mars quakes reveals daily meteorite strikes



An international team of researchers combine orbital imagery with seismological data from NASA's Mars InSight lander to derive a new impact rate for meteorite strikes on Mars. Seismology also offers a new tool for determining the density of Mars' craters and the age of different regions of a planet.
Published The density difference of sub-Neptunes finally deciphered



The majority of stars in our galaxy are home to planets. The most abundant are the sub-Neptunes, planets between the size of Earth and Neptune. Calculating their density poses a problem for scientists: depending on the method used to measure their mass, two populations are highlighted, the dense and the less dense. Is this due to an observational bias or the physical existence of two distinct populations of sub-Neptunes? Recent work argues for the latter.
Published Common plastics could passively cool and heat buildings with the seasons



By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.
Published Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films



If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.