Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Space: Cosmology
Published Matter comprises of 31% of the total amount of matter and energy in the universe


One of the most interesting and important questions in cosmology is, 'How much matter exists in the universe?' An international team has now succeeded in measuring the total amount of matter for the second time. The team determined that matter makes up 31% of the total amount of matter and energy in the universe, with the remainder consisting of dark energy.
Published Discovery of two potential Polar Ring galaxies suggests these stunning rare clusters might be more common than previously believed


These new detections suggest polar ring galaxies might be more common than previously believed.
Published Dark matter halos measured around ancient quasars


At the center of every galaxy is a supermassive black hole. Beyond a certain size, these become active, emitting huge amounts of radiation, and are then called quasars. It is thought these are activated by the presence of massive dark matter halos (DMH) surrounding the galaxy, directing matter towards the center, feeding the black hole. A team has now surveyed hundreds of ancient quasars and found this behavior is very consistent throughout history. This is surprising, as many large-scale processes show variation throughout the life of the universe, so the mechanism of quasar activation could have implications for the evolution of the entire universe.
Published Hot summer air turns into drinking water with new gel device


Researchers have focused on the moisture present in the air as a potential source of drinking water for drought-stressed populations. They reached a significant breakthrough in their efforts to create drinkable water out of thin air: a molecularly engineered hydrogel that can create clean water using just the energy from sunlight.
Published You can leave your gloves on: New material burns viruses, safe for skin


A new material that packs deadly heat for viruses on its outer surface while staying cool on the reverse side could be used to make sustainable, multiuse personal protective equipment.
Published The universe caught suppressing cosmic structure growth


As the universe evolves, scientists expect large cosmic structures to grow at a certain rate: dense regions such as galaxy clusters would grow denser, while the void of space would grow emptier.
Published Study hints at the existence of the closest black holes to Earth in the Hyades star cluster


A new article hints at the existence of several black holes in the Hyades cluster -- the closest open cluster to our solar system -- which would make them the closest black holes to Earth ever detected.
Published New cosmological constraints on the nature of dark matter


New research has revealed the distribution of dark matter in never before seen detail, down to a scale of 30,000 light-years. The observed distribution fluctuations provide better constraints on the nature of dark matter.
Published Grasping entropy: Teachers and students investigate thermodynamics through a hands-on model


Though a cornerstone of thermodynamics, entropy remains one of the most vexing concepts to teach budding physicists in the classroom. Physics teachers designed a hand-held model to demonstrate the concept of entropy for students. Using everyday materials, the approach allows students to confront the topic with new intuition -- one that takes specific aim at the confusion between entropy and disorder.
Published Furthest ever detection of a galaxy's magnetic field


Astronomers have detected the magnetic field of a galaxy so far away that its light has taken more than 11 billion years to reach us: we see it as it was when the Universe was just 2.5 billion years old. The result provides astronomers with vital clues about how the magnetic fields of galaxies like our own Milky Way came to be.
Published Vast bubble of galaxies discovered, given Hawaiian name



The immense bubble is 820 million light years from Earth and believed to be a fossil-like remnant of the birth of the universe.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published A new way to capture and recycle carbon dioxide from industrial emissions


Carbon capture is a promising method to help slow climate change. With this approach, carbon dioxide (CO¬¬2) is trapped before it escapes into the atmosphere, but the process requires a large amount of energy and equipment. Now, researchers have designed a capture system using an electrochemical cell that can easily grab and release CO2. The device operates at room temperature and requires less energy than conventional, amine-based carbon-capture systems.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Quantum discovery offers glimpse into other-worldly realm



Experiments promote a curious flipside of decaying monopoles: A reality where particle physics is quite literally turned on its head
Published How a cup of water can unlock the secrets of our Universe



A researcher made a discovery that could change our understanding of the universe. He reveals that there is a range in which fundamental constants can vary, allowing for the viscosity needed for life processes to occur within and between living cells. This is an important piece of the puzzle in determining where these constants come from and how they impact life as we know it.
Published Steam condenser coating could save 460M tons of CO2 annually


If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.
Published Rewriting the past and future of the universe



New research has improved the accuracy of the parameters governing the expansion of the Universe. More accurate parameters will help astronomers determine how the Universe grew to its current state, and how it will evolve in the future.
Published New type of star gives clues to mysterious origin of magnetars



Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.