Showing 20 articles starting at article 321

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Space: Cosmology

Return to the site home page

Chemistry: Biochemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Energy harvesting via vibrations: Researchers develop highly durable and efficient device      (via sciencedaily.com)     Original source 

An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Astronomers discover new link between dark matter and clumpiness of the universe      (via sciencedaily.com)     Original source 

Researchers reveal a theoretical breakthrough that may explain both the nature of invisible dark matter and the large-scale structure of the universe known as the cosmic web. The result establishes a new link between these two longstanding problems in astronomy, opening new possibilities for understanding the cosmos. The research suggests that the 'clumpiness problem,' which centres on the unexpectedly even distribution of matter on large scales throughout the cosmos, may be a sign that dark matter is composed of hypothetical, ultra-light particles called axions. The implications of proving the existence of hard-to-detect axions extend beyond understanding dark matter and could address fundamental questions about the nature of the universe itself.

Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

DESI early data release holds nearly two million objects      (via sciencedaily.com)     Original source 

The first batch of data from the Dark Energy Spectroscopic Instrument is now available for researchers to explore. Taken during the experiment's 'survey validation' phase, the data include distant galaxies and quasars as well as stars in our own Milky Way.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Astronomers discover supernova explosion through rare 'cosmic magnifying glasses'      (via sciencedaily.com)     Original source 

An international team of scientists recently discovered an exceptionally rare gravitationally lensed supernova, which the team named 'SN Zwicky.' Located more than 4 billion light years away, the supernova was magnified nearly 25 times by a foreground galaxy acting as a lens. The discovery presents a unique opportunity for astronomers to learn more about the inner cores of galaxies, dark matter and the mechanics behind universe expansion.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Sustainable technique to manufacture chemicals      (via sciencedaily.com)     Original source 

A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

New study identifies mechanism driving the sun's fast wind      (via sciencedaily.com)     Original source 

Researchers used data from NASA's Parker Solar Probe to explain how the solar wind is capable of surpassing speeds of 1 million miles per hour. They discovered that the energy released from the magnetic field near the sun's surface is powerful enough to drive the fast solar wind, which is made up of ionized particles -- called plasma -- that flow outward from the sun.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues
Published

Scientists use seaweed to create new material that can store heat for reuse      (via sciencedaily.com)     Original source 

Scientists have created a new material derived from seaweed that can store heat for re-use. It could be used to capture summer sun for use in winter, or to store heat from industry that currently goes up the chimney, potentially slashing carbon emissions. The material is in the form of small beads made from alginate, which is cheap, abundant and non-toxic. It stores heat four times more efficiently than a previous material the team had developed.

Chemistry: Thermodynamics Engineering: Nanotechnology
Published

'Heat highways' could keep electronics cool      (via sciencedaily.com)     Original source 

As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Webb Space Telescope detects universe's most distant complex organic molecules      (via sciencedaily.com)     Original source 

Researchers have detected complex organic molecules in a galaxy more than 12 billion light-years away from Earth -- the most distant galaxy in which these molecules are now known to exist. Thanks to the capabilities of the recently launched James Webb Space Telescope and careful analyses from the research team, a new study lends critical insight into the complex chemical interactions that occur in the first galaxies in the early universe.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Early universe crackled with bursts of star formation, Webb shows      (via sciencedaily.com)     Original source 

Among the most fundamental questions in astronomy is: How did the first stars and galaxies form? NASA's James Webb Space Telescope is already providing new insights into this question. One of the largest programs in Webb's first year of science is the JWST Advanced Deep Extragalactic Survey, or JADES, which will devote about 32 days of telescope time to uncover and characterize faint, distant galaxies. While the data is still coming in, JADES already has discovered hundreds of galaxies that existed when the universe was less than 600 million years old. The team also has identified galaxies sparkling with a multitude of young, hot stars.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Weigh a quasar's galaxy with precision      (via sciencedaily.com)     Original source 

Scientists have managed to weigh -- more precisely than any other technique -- a galaxy hosting a quasar, thanks to the fact that it acts as a gravitational lens. Detection of strong gravitational lensing quasars is expected to multiply with the launch of Euclid this summer.

Offbeat: General Offbeat: Space Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Eventually everything will evaporate, not only black holes      (via sciencedaily.com)     Original source 

New theoretical research has shown that Stephen Hawking was likely right about black holes, although not completely. Due to Hawking radiation, black holes will eventually evaporate, but the event horizon is not as crucial as had been believed. Gravity and the curvature of spacetime cause this radiation too. This means that all large objects in the universe, like the remnants of stars, will eventually evaporate.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General
Published

Researchers finds a way to reduce the overheating of semiconductor devices      (via sciencedaily.com)     Original source 

Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Astrophysicists confirm the faintest galaxy ever seen in the early universe      (via sciencedaily.com)     Original source 

After the Big Bang, the universe expanded and cooled sufficiently for hydrogen atoms to form. In the absence of light from the first stars and galaxies, the universe entered a period known as the cosmic dark ages. The first stars and galaxies appeared several hundred million years later and began burning away the hydrogen fog left over from the Big Bang, rendering the universe transparent, like it is today. Researchers have now confirmed the existence of a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic dark ages ended.

Chemistry: General Chemistry: Thermodynamics Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Thermal energy stored by land masses has increased significantly      (via sciencedaily.com)     Original source 

There are many effects of climate change. Perhaps the most broadly known is global warming, which is caused by heat building up in various parts of the Earth system, such as the atmosphere, the ocean, the cryosphere and the land. 89 percent of this excess heat is stored in the oceans, with the rest in ice and glaciers, the atmosphere and land masses (including inland water bodies). An international research team has now studied the quantity of heat stored on land, showing the distribution of land heat among the continental ground, permafrost soils, and inland water bodies. The calculations show that more than 20 times as much heat has been stored there since the 1960s, with the largest increase being in the ground.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

The next generation of solar energy collectors could be rocks      (via sciencedaily.com)     Original source 

The next generation of sustainable energy technology might be built from some low-tech materials: rocks and the sun. Using a new approach known as concentrated solar power, heat from the sun is stored then used to dry foods or create electricity. A team has found that certain soapstone and granite samples from Tanzania are well suited for storing this solar heat, featuring high energy densities and stability even at high temperatures.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

X-ray emissions from black hole jets vary unexpectedly, challenging leading model of particle acceleration      (via sciencedaily.com)     Original source 

Black hole jets are known to emit x-rays, but how they accelerate particles to this high-energy state is still a mystery. Surprising new findings appear to rule out a leading theory, opening the door to reimagining how particle acceleration works. One model of how jets generate x-rays expects the jets' x-ray emissions to remain stable over long time scales. However, the new paper found that the x-ray emissions of a statistically significant number of jets varied over just a few years.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Helium nuclei research advances our understanding of cosmic ray origin and propagation      (via sciencedaily.com)     Original source 

The latest observations from Low Earth Orbit with the International Space Station provide further evidence of spectral hardening and softening of cosmic ray particles.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum scientists accurately measure power levels one trillion times lower than usual      (via sciencedaily.com)     Original source 

Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.

Chemistry: Thermodynamics
Published

Sensors that operate at high temperatures and in extreme environments      (via sciencedaily.com)     Original source 

Researchers have developed a new reliable and durable sensor that can work in temperatures as high as 900 degrees Celsius or 1,650 degrees Fahrenheit and can be used in multiple industries.