Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Space: The Solar System
Published Researchers complete first real-world study of Martian helicopter dust dynamics


Researchers have completed the first real-world study of Martian dust dynamics based on Ingenuity's historic first flights on the Red Planet, paving the way for future extraterrestrial rotorcraft missions. The work could support NASA's Mars Sample Return Program, which will retrieve samples collected by Perseverance, or the Dragonfly mission that will set course for Titan, Saturn's largest moon, in 2027.
Published Evidence that Saturn's moon Mimas is a stealth ocean world


When a scientist discovered surprising evidence that Saturn's smallest, innermost moon could generate the right amount of heat to support a liquid internal ocean, colleagues began studying Mimas' surface to understand how its interior may have evolved. Numerical simulations of the moon's Herschel impact basin, the most striking feature on its heavily cratered surface, determined that the basin's structure and the lack of tectonics on Mimas are compatible with a thinning ice shell and geologically young ocean.
Published Will machine learning help us find extraterrestrial life?


Researchers have applied a deep learning technique to a previously studied dataset of nearby stars and uncovered eight previously unidentified signals of interest.
Published Researchers can 'see' crystals perform their dance moves


Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.
Published Meteorites reveal likely origin of Earth's volatile chemicals


By analyzing meteorites, researchers have uncovered the likely far-flung origin of Earth's volatile chemicals, some of which form the building blocks of life.
Published Solar System formed from 'poorly mixed cake batter,' isotope research shows


Earth's potassium arrived by meteoritic delivery service finds new research led by Earth and planetary scientists. Their work shows that some primitive meteorites contain a different mix of potassium isotopes than those found in other, more-chemically processed meteorites. These results can help elucidate the processes that shaped our Solar System and determined the composition of its planets.
Published Webb spies Chariklo ring system with high-precision technique


In an observational feat of high precision, scientists used a new technique with NASA's James Webb Space Telescope to capture the shadows of starlight cast by the thin rings of Chariklo. Chariklo is an icy, small body, but the largest of the known Centaur population, located more than 2 billion miles away beyond the orbit of Saturn.
Published Person-shaped robot can liquify and escape jail, all with the power of magnets


Inspired by sea cucumbers, engineers have designed miniature robots that rapidly and reversibly shift between liquid and solid states. On top of being able to shape-shift, the robots are magnetic and can conduct electricity. The researchers put the robots through an obstacle course of mobility and shape-morphing tests.
Published No 'second law of entanglement' after all


When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.
Published How a 3 cm glass sphere could help scientists understand space weather


Space weather can interfere with spaceflight and the operation of satellites, but the phenomenon is very difficult to study on Earth because of the difference in gravity. Researchers effectively reproduced the type of gravity that exists on or near stars and other planets inside of a glass sphere measuring 3 centimeters in diameter, or about 1.2 inches. The achievement could help scientists overcome the limiting role of gravity in experiments that are intended to model conditions in stars and other planets.
Published Asteroid findings from specks of space dust could save the planet


New research into the durability and age of an ancient asteroid made of rocky rubble and dust, revealed significant findings that could contribute to potentially saving the planet if one ever hurtled toward Earth.
Published Darkest view ever of interstellar ice



Astronomers used observations from the James Webb Space Telescope (JWST) to achieve the darkest ever view of a dense interstellar cloud. These observations have revealed the composition of a virtual treasure chest of ices from the early universe, providing new insights into the chemical processes of one of the coldest, darkest places in the universe as well as the origins of the molecules that make up planetary atmospheres.
Published Polysulfates could find wide use in high-performance electronics components


Flexible compounds made with Nobel-winning click chemistry can be used in energy-storing capacitors at high temperatures and electric fields.
Published How was the solar system formed? The Ryugu asteroid is helping us learn



Our solar system is estimated to be about 4.57 billion years old. Previous analyses of ancient meteorites have shown that minerals were created through chemical reactions with water as far back as 4.5 billion years ago. New findings from the Ryugu asteroid samples indicate that carbonates were forming from water-rock reactions several million years earlier, even closer to the solar system's beginnings.
Published Tumultuous migration on the edge of the Hot Neptune Desert


A team reveals the eventful migration history of planets bordering the Hot Neptune Desert, these extrasolar planets that orbit very close to their star.
Published The rich meteorology of Mars studied in detail from the Perseverance rover


Perseverance has now completed its investigation of the atmosphere throughout the first Martian year (which lasts approximately two Earth years). Specifically, astronomers have studied seasonal and daily cycles of temperature and pressure, as well as their significant variations on other time scales resulting from very different processes.
Published 17-pound meteorite discovered in Antarctica


Antarctica is a tough place to work, for obvious reasons -- it's bitterly cold, remote, and wild. However, it's one of the best places in the world to hunt for meteorites. That's partly because Antarctica is a desert, and its dry climate limits the degree of weathering the meteorites experience. On top of the dry conditions, the landscape is ideal for meteorite hunting: the black space rocks stand out clearly against snowy fields.
Published New small laser device can help detect signs of life on other planets


As space missions delve deeper into the outer solar system, the need for more compact, resource-conserving and accurate analytical tools has become increasingly critical -- especially as the hunt for extraterrestrial life and habitable planets or moons continues. A University of Maryland-led team developed a new instrument specifically tailored to the needs of NASA space missions. Their mini laser-sourced analyzer is significantly smaller and more resource efficient than its predecessors--all without compromising the quality of its ability to analyze planetary material samples and potential biological activity onsite.
Published The world in grains of interstellar dust


Understanding how dust grains form in interstellar gas could offer significant insights to astronomers and help materials scientists develop useful nanoparticles.
Published How do rocky planets really form?


A new theory could explain the origin and properties of systems of rocky super-Earths and their relationship with the terrestrial planets of the solar system.