Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Geoscience: Volcanoes

Return to the site home page

Chemistry: Thermodynamics
Published

Team recycles previously unrecyclable plastic      (via sciencedaily.com) 

Researchers have discovered a way to chemically recycle PVC into usable material, finding a way to use the phthalates in the plasticizers -- one of PVC's most noxious components -- as the mediator for the chemical reaction.

Chemistry: Thermodynamics
Published

Researchers introduce an energy-efficient method to enhance thermal conductivity of polymer composites      (via sciencedaily.com) 

Thermally conductive polymer composites consist of fillers oriented in certain directions that form pathways for heat flow. However, conventional methods to control the orientation of these fillers are energy-intensive and require surface modifications that can deteriorate the quality and properties of these materials. Now, researchers have developed an energy-efficient method to control the orientation of the fillers without the need for surface modification, resulting in improvement in thermal conductivity.

Chemistry: Thermodynamics
Published

Engineers use quantum computing to develop transparent window coating that blocks heat, saves energy      (via sciencedaily.com) 

Scientists have devised a transparent coating for windows that could help cool the room, use no energy and preserve the view.

Chemistry: Thermodynamics Energy: Alternative Fuels
Published

Cooling down solar cells, naturally      (via sciencedaily.com) 

Too much sun and too much heat can reduce the efficiency of photovoltaics. A solar farm with optimally spaced panels facing the correct direction could cool itself through convection using the surrounding wind. Researchers explored how to exploit the geometry of solar farms to enhance natural cooling mechanisms.

Chemistry: Thermodynamics
Published

High-performance and compact vibration energy harvester created for self-charging wearable devices      (via sciencedaily.com) 

A research team has developed a microelectromechanical system (MEMS) piezoelectric vibration energy harvester, which is only about 2 cm in diameter with a U-shaped metal vibration amplification component. The device allows for an increase of approximately 90 times in the power generation performance from impulsive vibration. Since the power generation performance can be improved without increasing the device size, the technology is expected to generate power to drive small wearable devices from non-steady vibrations, such as walking motion.

Chemistry: Thermodynamics
Published

Research unearths obscure heat transfer behaviors      (via sciencedaily.com) 

Researchers have found that boron arsenide, which has already been viewed as a highly promising material for heat management and advanced electronics, also has a unique property. After reaching an extremely high pressure that is hundreds of times greater than the pressure found at the bottom of the ocean, boron arsenide's thermal conductivity actually begins to decrease. The results suggest that there might be other materials experiencing the same phenomenon under extreme conditions.

Chemistry: Thermodynamics
Published

A life-inspired system dynamically adjusts to its environment      (via sciencedaily.com) 

The system regulates its own temperature in response to environmental disturbances.

Chemistry: Thermodynamics
Published

A nanoscale view of bubble formation      (via sciencedaily.com) 

A nanoscale view of bubble formation: Using computer simulation, a research team succeeded in modeling the behavior of molecules at the liquid -- gas interface at the nanometer scale, enabling them to describe the boiling process with extreme precision. The findings could be applied to future cooling systems for microprocessors, or to the production of carbon-neutral hydrogen, known as green hydrogen.

Chemistry: Thermodynamics
Published

Great potential for aquifer thermal energy storage systems      (via sciencedaily.com) 

Aquifer thermal energy storage systems can largely contribute to climate-friendly heating and cooling of buildings: Heated water is stored in the underground and pumped up, if needed. Researchers have now found that low-temperature aquifer thermal energy storage is of great potential in Germany. This potential is expected to grow in future due to climate change.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Monitoring 'frothy' magma gases could help evade disaster      (via sciencedaily.com) 

Volcanic eruptions are dangerous and difficult to predict. A team has found that the ratio of atoms in specific gases released from volcanic fumaroles (gaps in the Earth's surface) can provide an indicator of what is happening to the magma deep below -- similar to taking a blood test to check your health. This can indicate when things might be 'heating up.' Specifically, changes in the ratio of argon-40 and helium-3 can indicate how frothy the magma is, which signals the risk of different types of eruption. Understanding which ratios of which gases indicate a certain type of magma activity is a big step. Next, the team hopes to develop portable equipment which can provide on-site, real-time measurements for a 24/7 volcanic activity monitoring and early warning system.

Chemistry: Thermodynamics
Published

How '2D' materials expand      (via sciencedaily.com) 

Researchers developed a technique to effectively measure the thermal expansion coefficient of two-dimensional materials. With this information, engineers could more effectively and efficiently use these atomically-thin materials to develop next-generation electronic devices that can perform better and run faster than those built with conventional materials.

Chemistry: Thermodynamics Energy: Nuclear Space: Structures and Features
Published

How does radiation travel through dense plasma?      (via sciencedaily.com) 

Researchers provide experimental data about how radiation travels through dense plasmas. Their data will improve plasma models, which allow scientists to better understand the evolution of stars and may aid in the realization of controlled nuclear fusion as an alternative energy source.

Chemistry: Thermodynamics Space: Exploration
Published

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites      (via sciencedaily.com) 

Carbon fiber-reinforced ultra-high-temperature ceramic (UHTC) matrix composites are extensively used in space shuttles and high-speed vehicles. However, these composites suffer from a lack of oxidation resistance. Recently, researchers tested the heat resistance of these composites at very high temperatures, providing insight into the modifications needed to prevent UHTC degradation. Their findings could have huge implications for the manufacture of space shuttle orbiters.

Chemistry: Thermodynamics
Published

Autonomous crawling soft 'ringbots' can navigate narrow gaps      (via sciencedaily.com) 

Researchers have created a ring-shaped soft robot capable of crawling across surfaces when exposed to elevated temperatures or infrared light. The researchers have demonstrated that these 'ringbots' are capable of pulling a small payload across the surface -- in ambient air or under water, as well as passing through a gap that is narrower than its ring size.

Chemistry: Thermodynamics
Published

With new heat treatment, 3D-printed metals can withstand extreme conditions      (via sciencedaily.com) 

A new way to 3D-print metals makes the materials stronger and more resilient in extreme thermal environments. The technique could lead to 3D printed high-performance blades and vanes for gas turbines and jet engines, which would enable improved fuel consumption and energy efficiency.

Chemistry: Thermodynamics
Published

Researchers develop superfast new method to manufacture high-performance thermoelectric devices      (via sciencedaily.com) 

Aerospace and mechanical engineers have developed a machine-learning assisted superfast new way to create high-performance, energy-saving thermoelectric devices.

Chemistry: Thermodynamics
Published

Plant fibers for sustainable devices      (via sciencedaily.com) 

Plant-derived materials such as cellulose often exhibit thermally insulating properties. A new material made from nanoscale cellulose fibers shows the reverse, high thermal conductivity. This makes it useful in areas previously dominated by synthetic polymer materials. Materials based on cellulose have environmental benefits over polymers, so research on this could lead to greener technological applications where thermal conductivity is needed.

Geoscience: Volcanoes
Published

Tonga volcano had highest plume ever recorded      (via sciencedaily.com) 

Using images captured by satellites, researchers have confirmed that the January 2022 eruption of the Hunga Tonga-Hunga Ha'apai volcano produced the highest-ever recorded plume. The colossal eruption is also the first to have been directly observed to have broken through to the mesosphere layer of the atmosphere.

Geoscience: Volcanoes
Published

Volcanic activity and low ocean oxygen events linked to climate warming and rapid ice melt during last ice age, study finds      (via sciencedaily.com) 

A chemical analysis of sediment cores from the North Pacific Ocean show a consistent pairing of volcanic ash and hypoxia, a low ocean oxygen interval spanning thousands of years, during times of rapid climate warming at the end of the last ice age, new research shows.

Chemistry: Thermodynamics
Published

Clear window coating could cool buildings without using energy      (via sciencedaily.com) 

As climate change intensifies summer heat, demand is growing for technologies to cool buildings. Now, researchers report that they have used advanced computing technology and artificial intelligence to design a transparent window coating that could lower the temperature inside buildings, without expending a single watt of energy.