Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Geoscience: Geochemistry
Published Study clearly identifies nutrients as a driver of the Great Atlantic Sargassum Belt



Under normal conditions, the floating macroalgae Sargassum spp. provide habitat for hundreds of types of organisms. However, the Great Atlantic Sargassum Belt (GASB) that emerged in 2011 has since then caused unprecedented inundations of this brown seaweed on Caribbean coastlines, with harmful effects on ecosystems while posing challenges to regional economies and tourism, and concerns for respiratory and other human health issues.
Published Experiencing record-breaking heat days affects perception of weather trends



Research finds that experiencing days in which the temperature exceeds previous highs for that time of year affects people’s perception of weather trends.
Published Titanium oxide material can remove toxic dyes from wastewater



Discharged in large quantities by textile, cosmetic, ink, paper and other manufacturers, dyes carry high-toxicity and can bring potential carcinogens to wastewater. It’s a major concern for wastewater treatment — but researchers may have found a solution, using a tiny nanofilament.
Published Paleoclimatologists use ancient sediment to explore future climate in Africa



With global warming apparently here to stay, a team of paleoclimatologists are studying an ancient source to determine future rainfall and drought patterns: fossilized plants that lived on Earth millions of years ago.
Published Modular dam design could accelerate the adoption of renewable energy



Scientists have developed a new modular steel buttress dam system designed to resolve energy storage issues hindering the integration of renewable resources into the energy mix. The new modular steel buttress dam system facilitates the rapid construction of paired reservoir systems for grid-scale energy storage and generation using closed-loop pumped storage hydropower, cutting dam construction costs by one-third and reducing construction schedules by half.
Published Discovery of invisible nutrient discharge on Great Barrier Reef raises concerns



Scientists using natural tracers off Queensland’s coast have discovered the source of previously unquantified nitrogen and phosphorus having a profound environmental impact on the Great Barrier Reef. Groundwater discharge accounted for approximately one-third of new nitrogen and two-thirds of phosphorus inputs, indicating that nearly twice the amount of nitrogen enters the Reef from groundwater compared to river waters.
Published Researchers identify largest ever solar storm in ancient 14,300-year-old tree rings



An international team of scientists have discovered a huge spike in radiocarbon levels 14,300 years ago by analyzing ancient tree-rings found in the French Alps. The radiocarbon spike was caused by a massive solar storm, the biggest ever identified. A similar solar storm today would be catastrophic for modern technological society – potentially wiping out telecommunications and satellite systems, causing massive electricity grid blackouts, and costing us billions. The academics are warning of the importance of understanding such storms to protect our global communications and energy infrastructure for the future.
Published Climate change brings earlier arrival of intense hurricanes



New research has revealed that since the 1980s, Category 4 and 5 hurricanes (maximum wind speed greater than 131 miles per hour) have been arriving three to four days earlier with each passing decade of climate change.
Published Discovery made about Fischer Tropsch process could help improve fuel production



A fundamental discovery about the Fischer Tropsch process, a catalytic reaction used in industry to convert coal, natural gas or biomass to liquid fuels, could someday allow for more efficient fuel production. Researchers discovered previously unknown self-sustained oscillations in the Fischer Tropsch process. They found that unlike many catalytic reactions which have one steady state, this reaction periodically moves back and forth from a high to a low activity state. The discovery means that these well-controlled oscillatory states might be used in the future to control the reaction rate and the yields of desired products.
Published Plants could worsen air pollution on a warming planet



New research shows that plants such as oak and poplar trees will emit more of a compound called isoprene as global temperatures climb. Isoprene from plants represents the highest flux of hydrocarbons to the atmosphere after methane. Although isoprene isn’t inherently bad — it actually helps plants better tolerate insect pests and high temperatures — it can worsen air pollution by reacting with nitrogen oxides from automobiles and coal-fired power plants. The new publication can help us better understand, predict and potentially mitigate the effects of increased isoprene emission as the planet warms.
Published Successful morphing of inorganic perovskites without damaging their functional properties



A research team has successfully morphed all-inorganic perovskites at room temperature without compromising their functional properties. Their findings demonstrate the potential of this class of semiconductors for manufacturing next-generation deformable electronics and energy systems in the future.
Published Climate intervention technologies may create winners and losers in world food supply



A technology being studied to curb climate change – one that could be put in place in one or two decades if work on the technology began now – would affect food productivity in parts of planet Earth in dramatically different ways, benefiting some areas, and adversely affecting others, according to new projections.
Published Comfort with a smaller carbon footprint



Researchers have developed a data-driven AI algorithm for controlling the heating and cooling of an office building. The system does not require ambient sensors or specific knowledge of the building's rooms. During heating operations, the system was able to achieve energy savings of up to 30%, which can represent significant reductions to cost and environmental impact.
Published Two-dimensional compounds can capture carbon from the air



Some of the thinnest materials known to humankind -- MXene and MBene compounds -- may provide solutions to scientists in their quest to curb the effects of global warming. These substances are only a few atoms thick, making them two-dimensional. Because of their large surface area, the materials have the potential to absorb carbon dioxide molecules from the atmosphere, which could help reduce the harmful effects of climate change by safely sequestering carbon dioxide, according to a review study.
Published Staying dry for months underwater



Researchers have developed a superhydrophobic surface with a stable plastron that can last for months under water. The team’s general strategy to create long-lasting underwater superhydrophobic surfaces, which repel blood and drastically reduce or prevent the adhesion of bacterial and marine organisms such as barnacles and mussels, opens a range of applications in biomedicine and industry.
Published Ancient carbon in rocks releases as much carbon dioxide as the world's volcanoes



New research has overturned the traditional view that natural rock weathering acts as a carbon sink that removes CO2 from the atmosphere. Instead, this can also act as a large CO2 source, rivaling that of volcanoes.
Published Volcanic ash effects on Earth systems



To bridge the knowledge gap between volcanologists and atmospheric scientists working on climate change and observing global systems, researchers have characterized volcanic ash samples from many explosive eruptions of a broad compositional range.
Published New pipeline makes valuable organic acid from plants -- saving money and emissions



In a breakthrough for environmentally friendly chemical production, researchers have developed an economical way to make succinic acid, an important industrial chemical, from sugarcane. The team has created a cost-effective, end-to-end pipeline for this valuable organic acid by engineering a tough, acid-tolerant yeast as the fermenting agent, avoiding costly steps in downstream processing. Succinic acid is a widely used additive for food and beverages and has diverse applications in agricultural and pharmaceutical products. This same pipeline can be used to produce other industrially important organic acids from crops rather than petroleum-based processes, significantly reducing greenhouse gas emissions.
Published Carbon-capture tree plantations threaten tropical biodiversity for little gain, ecologists say



The increasingly urgent climate crisis has led to a boom in commercial tree plantations in an attempt to offset excess carbon emissions. However, authors argue that these carbon-offset plantations might come with costs for biodiversity and other ecosystem functions. Instead, the authors say we should prioritize conserving and restoring intact ecosystems.
Published Carbon capture method plucks CO2 straight from the air



Even as the world slowly begins to decarbonize industrial processes, achieving lower concentrations of atmospheric carbon requires technologies that remove existing carbon dioxide from the atmosphere — rather than just prevent the creation of it.