Showing 20 articles starting at article 41

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Geoscience: Geology

Return to the site home page

Chemistry: Thermodynamics
Published

Aluminum scandium nitride films: Enabling next-gen ferroelectric memory devices      (via sciencedaily.com)     Original source 

Aluminum scandium nitride thin films could pave the way for the next generation of ferroelectric memory devices, according to a new study. Compared to existing ferroelectric materials, these films maintain their ferroelectric properties and crystal structure even after heat treatment at temperatures up to 600 C in both hydrogen and argon atmospheres. This high stability makes them ideal for high-temperature manufacturing processes under the H2-included atmosphere used in fabricating advanced memory devices.

Chemistry: General Chemistry: Thermodynamics Physics: Optics
Published

3D printing of light-activated hydrogel actuators      (via sciencedaily.com)     Original source 

An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Engineering: Nanotechnology Physics: Optics
Published

New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity      (via sciencedaily.com)     Original source 

Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Capturing carbon with energy-efficient sodium carbonate-nanocarbon hybrid material      (via sciencedaily.com)     Original source 

Carbon capture is a promising approach for mitigating carbon dioxide (CO2) emissions. Different materials have been used to capture CO2 from industrial exhaust gases. Scientists developed hybrid CO2 capture materials containing sodium carbonate and nanocarbon prepared at different temperatures, tested their performance, and identified the optimal calcination temperature condition. They found that the hybrid material exhibits and maintains high CO2 capture capacity for multiple regeneration cycles at a lower temperature, making it cost- and energy-effective.

Chemistry: General Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology
Published

Scientists discover missing piece in climate models      (via sciencedaily.com)     Original source 

As the planet continues to warm due to human-driven climate change, accurate computer climate models will be key in helping illuminate exactly how the climate will continue to be altered in the years ahead.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Hydrogen flight looks ready for take-off with new advances      (via sciencedaily.com)     Original source 

The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.

Environmental: Water Geoscience: Earth Science Geoscience: Geology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Building materials for water-rich planets in the early solar system      (via sciencedaily.com)     Original source 

Age data for certain classes of meteorite have made it possible to gain new findings on the origin of small water-rich astronomical bodies in the early solar system. These planetesimals continually supplied building materials for planets -- also for the Earth, whose original material contained little water. The Earth received its actual water through planetesimals, which emerged at low temperatures in the outer solar system, as shown by computational models carried out by an international research teach with participation by earth scientists.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A 2D device for quantum cooling      (via sciencedaily.com)     Original source 

Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.

Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Cool roofs are best at beating cities' heat      (via sciencedaily.com)     Original source 

Painting roofs white or covering them with a reflective coating would be more effective at cooling cities like London than vegetation-covered 'green roofs,' street-level vegetation or solar panels, finds a new study led by UCL researchers.

Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geology Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Organic material from Mars reveals the likely origin of life's building blocks      (via sciencedaily.com)     Original source 

Two samples from Mars together deliver clear evidence of the origin of Martian organic material. The study presents solid evidence for a prediction made over a decade ago that could be key to understanding how organic molecules, the foundation of life, were first formed here on Earth.

Chemistry: Biochemistry Chemistry: Thermodynamics
Published

Scientists probe chilling behavior of promising solid-state cooling material      (via sciencedaily.com)     Original source 

A research team has bridged a knowledge gap in atomic-scale heat motion. This new understanding holds promise for enhancing materials to advance an emerging technology called solid-state cooling.

Environmental: Water Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Paleontology: Climate
Published

Investigating newly discovered hydrothermal vents at depths of 3,000 meters off Svalbard      (via sciencedaily.com)     Original source 

Hydrothermal vents can be found around the world at the junctions of drifting tectonic plates. But there are many hydrothermal fields still to be discovered. During a 2022 expedition of the MARIA S. MERIAN, the first field of hydrothermal vents on the 500-kilometer-long Knipovich Ridge off the coast of Svalbard was discovered.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather Physics: Optics
Published

Common plastics could passively cool and heat buildings with the seasons      (via sciencedaily.com)     Original source 

By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.

Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films      (via sciencedaily.com)     Original source 

If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.

Anthropology: General Biology: General Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Geoscience: Earth Science Geoscience: Geology Paleontology: Fossils Paleontology: General
Published

Why the harsh Snowball Earth kick-started our earliest multicellular ancestors      (via sciencedaily.com)     Original source 

Why did multicellularity arise? Solving that mystery may help pinpoint life on other planets and explain the vast diversity and complexity seen on Earth today, from sea sponges to redwoods to human society. A new article shows how specific physical conditions -- especially ocean viscosity and resource deprivation -- during the global glaciation period known as Snowball Earth could have driven eukaryotes to turn multicellular.

Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Iceland's volcano eruptions may last decades      (via sciencedaily.com)     Original source 

Scientists predict from geochemical data that Iceland is entering a new volcanic era that will last for decades, possibly centuries. Under an hour's drive from the country's capital city, the ongoing eruptions pose considerable risks for economic disruption, and they leave evacuated communities uncertain of a possible return.

Chemistry: Thermodynamics Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General
Published

Small, adsorbent 'fins' collect humidity rather than swim through water      (via sciencedaily.com)     Original source 

Clean, safe water is a limited resource and access to it depends on local bodies of water. But even dry regions have some water vapor in the air. To harvest small amounts of humidity, researchers developed a compact device with absorbent-coated fins that first trap moisture and then generate potable water when heated. They say the prototype could help meet growing demands for water, especially in arid locations.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Physics: Optics
Published

New fabric makes urban heat islands more bearable      (via sciencedaily.com)     Original source 

Researchers detail a new wearable fabric that can help urban residents survive the worst impacts of massive heat caused by global climate change, with applications in clothing, building and car design, and food storage. By addressing both direct solar heating and the thermal radiation emitting from pavement and buildings in urban heat islands, the material kept 2.3 degrees Celsius (4.1 degrees Fahrenheit) cooler than the broadband emitter fabric used for outdoor endurance sports and 8.9 degrees Celsius (16 degrees Fahrenheit) cooler than the commercialized silk commonly used for shirts, dresses and other summer clothing.