Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Geoscience: Geology
Published New polystyrene recycling process could be world's first to be both economical and energy-efficient



Engineers have modeled a new way to recycle polystyrene that could become the first viable way of making the material reusable.
Published New insights into the degradation dynamics of organic material in the seafloor



Many processes in the deep sea are not yet well understood, and the role of microbial communities in particular is often a big unknown. This includes, for example, how organic material that sinks from the water surface to the ocean floor is metabolised -- an important building block for a better understanding of the global carbon cycle.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published Can coal mines be tapped for rare earth elements?



A team of geologists analyzed 3,500 samples taken in and around coal mines in Utah and Colorado. Their findings open the possibility that these mines could see a secondary resource stream in the form of rare earth metals used in renewable energy and numerous other high-tech applications.
Published Extreme complexity in formation of rare earth mineral vital for tech industry



Researchers have unveiled that myriad, intricate factors influence the genesis and chemistry of bastnasite and rare earth carbonates, which are critically needed for today's tech industry and its hardware outputs. Their work unveils a newly acquired depth of understanding that had previously been unexplored in this field. In combination, the findings mark a significant advancement and promise to reshape our understanding of rare earth mineral formation.
Published Subduction zone splay faults compound hazards of great earthquakes



Groundbreaking research has provided new insight into the tectonic plate shifts that create some of the Earth's largest earthquakes and tsunamis.
Published A powerful tool speeds success in achieving highly efficient thermoelectric materials



Thermoelectric materials could play an important role in the clean energy transition, as they can produce electricity from sources of heat that would otherwise go to waste. Researchers report a new approach to efficiently predict when thermoelectric materials will have improved performance in converting heat into electricity.
Published Using AI to improve building energy use and comfort



Researchers have developed a new method that can lead to significant energy savings in buildings. The team identified 28 major heat loss regions in a multi-unit residential building with the most severe ones being at wall intersections and around windows. A potential energy savings of 25 per cent is expected if 70 per cent of the discovered regions are fixed.
Published Scientists generate heat over 1,000 degrees Celsius with solar power instead of fossil fuel



Instead of burning fossil fuels to smelt steel and cook cement, researchers in Switzerland want to use heat from the sun. The proof-of-concept study uses synthetic quartz to trap solar energy at temperatures over 1,000 C (1,832 F), demonstrating the method's potential role in providing clean energy for carbon-intensive industries.
Published Using artificial intelligence to speed up and improve the most computationally-intensive aspects of plasma physics in fusion



Researchers are using artificial intelligence to perfect the design of the vessels surrounding the super-hot plasma, optimize heating methods and maintain stable control of the reaction for increasingly long periods. A new article explains how a researcher team used machine learning to avoid magnetic perturbations, or disruptions, which destabilize fusion plasma.
Published Exceptionally large transverse thermoelectric effect produced by combining thermoelectric and magnetic materials



A research team has demonstrated that a simple stack of thermoelectric and magnetic material layers can exhibit a substantially larger transverse thermoelectric effect -- energy conversion between electric and heat currents that flow orthogonally to each other within it -- than existing magnetic materials capable of exhibiting the anomalous Nernst effect. This mechanism may be used to develop new types of thermoelectric devices useful in energy harvesting and heat flux sensing.
Published New work extends the thermodynamic theory of computation



Physicists and computer scientists have recently expanded the modern theory of the thermodynamics of computation. By combining approaches from statistical physics and computer science, the researchers introduce mathematical equations that reveal the minimum and maximum predicted energy cost of computational processes that depend on randomness, which is a powerful tool in modern computers.
Published Clues from deep magma reservoirs could improve volcanic eruption forecasts



New research into molten rock 20km below the Earth's surface could help save lives by improving the prediction of volcanic activity.
Published Transforming common soft magnets into a next-generation thermoelectric conversion materials by 3 minutes heat treatment



A research team has demonstrated that an iron-based amorphous alloy, widely used as a soft magnetic material in transformers and motors, can be transformed into a 'transverse' thermoelectric conversion material that converts electric and thermal currents in orthogonal directions, with just a short period of heat treatment. This is the first example that highlights the importance of microstructure engineering in the development of transverse thermoelectric conversion materials, and provides new design guidelines for materials development to realize environmentally friendly power generation and thermal management technologies using magnetic materials.
Published Heavy snowfall and rain may contribute to some earthquakes



Episodes of heavy snowfall and rain likely contributed to a swarm of earthquakes over the past several years in northern Japan, researchers find. Their study shows climate conditions could initiate some earthquakes.
Published Rock steady: Study reveals new mechanism to explain how continents stabilized



Ancient, expansive tracts of continental crust called cratons have helped keep Earth's continents stable for billions of years, even as landmasses shift, mountains rise and oceans form. A new mechanism may explain how the cratons formed some 3 billion years ago, an enduring question in the study of Earth's history.
Published Researchers show that slow-moving earthquakes are controlled by rock permeability



A research group explores how the makeup of rocks, specifically their permeability -- or how easily fluids can flow through them -- affects the frequency and intensity of slow slip events. Slow slips' role in the earthquake cycle may help lead to a better model to predict when earthquakes happen.
Published From fossils to fuel: Mozambique's Maniamba Basin's energy potential



In the ever-expanding search for energy resources, a new study has emerged from Mozambique's Maniamba Basin. Mozambique's Maniamba Basin could be a big source of natural gas.
Published Geologists, biologists unearth the atomic fingerprints of cancer



Earth scientists have long turned to minute differences in hydrogen atoms to explore the ancient history of our planet. A new study suggests that these same tiny atoms might also lead to new ways to track the growth of cancer.
Published Did a magnetic field collapse trigger the emergence of animals?



Researchers uncovered compelling evidence that Earth's magnetic field was in a highly unusual state when the macroscopic animals of the Ediacaran Period -- 635 to 541 million years ago -- diversified and thrived. Their study raises the question of whether these fluctuations in Earth's ancient magnetic field led to shifts in oxygen levels that may have been crucial to the proliferation of life forms millions of years ago.