Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Geoscience: Oceanography
Published Hot summer air turns into drinking water with new gel device


Researchers have focused on the moisture present in the air as a potential source of drinking water for drought-stressed populations. They reached a significant breakthrough in their efforts to create drinkable water out of thin air: a molecularly engineered hydrogel that can create clean water using just the energy from sunlight.
Published Conservation in shark sanctuaries



Researchers are assessing the efficacy of shark sanctuaries by developing a modeling system that utilizes publicly accessible fishing data to determine shark catch and mortality rates. Their findings represent an important step in utilizing data science to tackle oceanic conservation challenges.
Published You can leave your gloves on: New material burns viruses, safe for skin


A new material that packs deadly heat for viruses on its outer surface while staying cool on the reverse side could be used to make sustainable, multiuse personal protective equipment.
Published Helicopter-based observations uncover warm ocean water flows toward Totten Ice Shelf in Southeast Antarctica



An international team of scientists has successfully conducted large-scale helicopter-based observations along the coast of East Antarctica and has identified pathways through which warm ocean water flows from the open ocean into ice shelf cavities for the first time.
Published Scientific ocean drilling discovers dynamic carbon cycling in the ultra-deep-water Japan Trench



Hadal trenches, with their deepest locations situated in the so-called hadal zone, the deepest parts of the ocean in water depth >6km, are the least-explored environment on Earth, linking the Earth's surface and its deeper interior. An international team conducting deep-subsurface sampling in a hadal trench at high spatial resolution has revealed exciting insights on the carbon cycling in the trench sediment.
Published Scientists find evidence of sea star species hybridization


A new study presents genomic evidence of hybridization between two closely related species of sea stars -- Asterias rubens, the common starfish, and Asterias forbesi, known as Forbes' sea star.
Published Bursting air bubbles may play a key role in how glacier ice melts



New research has uncovered a possible clue as to why glaciers that terminate at the sea are retreating at unprecedented rates: the bursting of tiny, pressurized bubbles in underwater ice.
Published Stability inspection for West Antarctica shows: marine ice sheet is not destabilized yet, but possibly on a path to tipping



Antarctica's vast ice masses seem far away, yet they store enough water to raise global sea levels by several meters. A team of experts has now provided the first systematic stability inspection of the ice sheet's current state. Their diagnosis: While they found no indication of irreversible, self-reinforcing retreat of the ice sheet in West Antarctica yet, global warming to date could already be enough to trigger the slow but certain loss of ice over the next hundreds to thousands of years.
Published Grasping entropy: Teachers and students investigate thermodynamics through a hands-on model


Though a cornerstone of thermodynamics, entropy remains one of the most vexing concepts to teach budding physicists in the classroom. Physics teachers designed a hand-held model to demonstrate the concept of entropy for students. Using everyday materials, the approach allows students to confront the topic with new intuition -- one that takes specific aim at the confusion between entropy and disorder.
Published Fossil spines reveal deep sea's past



Right at the bottom of the deep sea, the first very simple forms of life on earth probably emerged a long time ago. Today, the deep sea is known for its bizarre fauna. Intensive research is being conducted into how the number of species living on the sea floor have changed in the meantime. Some theories say that the ecosystems of the deep sea have emerged again and again after multiple mass extinctions and oceanic upheavals. Today's life in the deep sea would thus be comparatively young in the history of the Earth. But there is increasing evidence that parts of this world are much older than previously thought.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Blowing snow contributes to Arctic warming



Atmospheric scientists have discovered abundant fine sea salt aerosol production from wind-blown snow in the central Arctic, increasing seasonal surface warming.
Published New research explains 'Atlantification' of the Arctic Ocean



New research by an international team of scientists explains what's behind a stalled trend in Arctic Ocean sea ice loss since 2007. The findings indicate that stronger declines in sea ice will occur when an atmospheric feature known as the Arctic dipole reverses itself in its recurring cycle. The many environmental responses to the Arctic dipole are described in a recent article. This analysis helps explain how North Atlantic water influences Arctic Ocean climate. Scientists call it Atlantification.
Published Antarctic ice shelves thinner than previously thought



As global ice dams begin to weaken due to warming temperatures, a new study suggests that prior attempts to evaluate the mass of the huge floating ice shelves that line the Antarctic ice sheet may have overestimated their thickness.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published Coastal fisheries show surprising resilience to marine heat waves


New research found that marine heat waves -- prolonged periods of unusually warm ocean temperatures -- haven't had a lasting effect on the fish communities that feed most of the world. The finding is in stark contrast to the devastating effects seen on other marine ecosystems cataloged by scientists after similar periods of warming, including widespread coral bleaching and harmful algal blooms.
Published Using evidence from last Ice Age, scientists predict effects of rising seas on coastal habitats



The rapid sea level rise and resulting retreat of coastal habitat seen at the end of the last Ice Age could repeat itself if global average temperatures rise beyond certain levels, according to an analysis by an international team of scientists.
Published A new way to capture and recycle carbon dioxide from industrial emissions


Carbon capture is a promising method to help slow climate change. With this approach, carbon dioxide (CO¬¬2) is trapped before it escapes into the atmosphere, but the process requires a large amount of energy and equipment. Now, researchers have designed a capture system using an electrochemical cell that can easily grab and release CO2. The device operates at room temperature and requires less energy than conventional, amine-based carbon-capture systems.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published New species of marine bacteria isolated from a deep-sea cold seep



Researchers have isolated a new strain of marine bacteria with unique characteristics from the ocean seabed.