Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Paleontology: Dinosaurs
Published Separating molecules requires lots of energy. This new, heat-resistant membrane could change that



A research team has created a new, heat-resistant membrane that can withstand harsh environments -- high temperatures, high pressure and complex chemical solvents -- associated with industrial separation processes. It could eventually be used as a less energy intensive alternative to distillation and other industrial processes that separate molecules that ultimately serve as ingredients in medicine, chemicals and other products.
Published Light and sound waves reveal negative pressure


Negative pressure is a rare and challenging-to-detect phenomenon in physics. Using liquid-filled optical fibers and sound waves, researchers have now discovered a new method to measure it. In collaboration with the Leibniz Institute of Photonic Technologies in
Published Dinosaur feathers reveal traces of ancient proteins



Palaeontologists have discovered X-ray evidence of proteins in fossil feathers that sheds new light on feather evolution.
Published No shortcuts: New approach may help extract more heat from geothermal reservoirs


Geothermal heat offers a promising source of renewable energy with almost zero emissions, but it remains a relatively expensive option to generate electricity. A new technique may help prevent 'short-circuits' that can cause geothermal power plants to halt production, potentially improving the efficiency of geothermal power, the researchers said.
Published Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle



A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.
Published Chameleon-inspired coating could cool and warm buildings through the seasons


As summer turns to fall, many people will be turning off the air conditioning and firing up heaters instead. But traditional heating and cooling systems are energy intensive, and because they typically run on fossil fuels, they aren't sustainable. Now, by mimicking a desert-dwelling chameleon, a team has developed an energy-efficient, cost-effective coating. The material could keep buildings cool in the summers -- or warm in the winters -- without additional energy.
Published Electrons take flight at the nanoscale


A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.
Published Atomic layer deposition route to scalable, electronic-grade van der Waals Te thin films


A research team has made a significant breakthrough in thin film deposition technology.
Published Researchers make strides in harnessing low-grade heat for efficient energy conversion


A research team has achieved significant breakthroughs in harnessing low-grade heat sources (<100 °C) for efficient energy conversion.
Published Nature's great survivors: Flowering plants survived the mass extinction that killed the dinosaurs



A new study by researchers from the University of Bath (UK) and Universidad Nacional Autónoma de México (Mexico) shows that flowering plants escaped relatively unscathed from the mass extinction that killed the dinosaurs 66 million years ago. Whilst they suffered some species loss, the devastating event helped flowering plants become the dominant type of plant today.
Published Hot summer air turns into drinking water with new gel device


Researchers have focused on the moisture present in the air as a potential source of drinking water for drought-stressed populations. They reached a significant breakthrough in their efforts to create drinkable water out of thin air: a molecularly engineered hydrogel that can create clean water using just the energy from sunlight.
Published You can leave your gloves on: New material burns viruses, safe for skin


A new material that packs deadly heat for viruses on its outer surface while staying cool on the reverse side could be used to make sustainable, multiuse personal protective equipment.
Published Grasping entropy: Teachers and students investigate thermodynamics through a hands-on model


Though a cornerstone of thermodynamics, entropy remains one of the most vexing concepts to teach budding physicists in the classroom. Physics teachers designed a hand-held model to demonstrate the concept of entropy for students. Using everyday materials, the approach allows students to confront the topic with new intuition -- one that takes specific aim at the confusion between entropy and disorder.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published A new way to capture and recycle carbon dioxide from industrial emissions


Carbon capture is a promising method to help slow climate change. With this approach, carbon dioxide (CO¬¬2) is trapped before it escapes into the atmosphere, but the process requires a large amount of energy and equipment. Now, researchers have designed a capture system using an electrochemical cell that can easily grab and release CO2. The device operates at room temperature and requires less energy than conventional, amine-based carbon-capture systems.
Published Europe's very own dinosaurs -- the enigmatic Late Cretaceous rhabdodontids



A new study brings together intriguing details about the little-known Rhabdodontidae dinosaurs of Late Cretaceous Europe. These gregarious herbivores, characterized by robust builds and beaks specialized for tough vegetation, inhabited the European archipelago. Despite being widespread and abundant, they vanished in Western Europe due to environmental changes around 69 million years ago, while surviving longer in Eastern Europe. Their fossil record offers valuable insights into their evolution and lifestyle, although its limited nature still challenges comprehensive understanding.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Newly discovered 'primitive cousins of T rex' shed light on the end of the age of dinosaurs in Africa



Researchers have discovered the fossils of two new abelisaurs in Morocco, showing the diversity of dinosaurs in this region at the end of the Cretaceous period.
Published Steam condenser coating could save 460M tons of CO2 annually


If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.