Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Offbeat: Space
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Spatial patterns in distribution of galaxies


In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.
Published Thermal conductivity of metal organic frameworks


Metal organic frameworks, or MOFs, are kind of like plastic building block toys. The pieces are simple to connect, yet they're capable of building highly sophisticated structures.
Published ALMA traces history of water in planet formation back to the interstellar medium


Observations of water in the disk forming around protostar V883 Ori have unlocked clues about the formation of comets and planetesimals in our own solar system.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published The planet that could end life on Earth


A terrestrial planet hovering between Mars and Jupiter would be able to push Earth out of the solar system and wipe out life on this planet, according to a recent experiment.
Published Can artificial intelligence help find life on Mars or icy worlds?


Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.
Published Resurrected supernova provides missing link


Astronomers have discovered a supernova exhibiting unprecedented rebrightening at millimeter wavelengths, providing an intermediate case between two types of supernovae: those of solitary stars and those in close-binary systems.
Published Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films


Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.
Published Hansel and Gretel's breadcrumb trick inspires robotic exploration of caves on Mars and beyond


Future space missions likely will send robots to scout out underground habitats for astronauts. Engineers have now developed a system that would enable autonomous vehicles to explore caves, lava tubes and even oceans on other worlds on their own.
Published Ultracool dwarf binary stars break records


Astrophysicists have discovered the tightest ultracool dwarf binary system ever observed. The two stars are so close that it takes them less than one Earth day to revolve around each other. In other words, each star's 'year' lasts just 17 hours.
Published Baby star near the black hole in the middle of our Milky Way: It exists after all


Scientists have detected the heaviest and youngest infant star ever discovered close to the black hole at the center of our Galaxy. They also identified the region where this 'impossible star' may have formed.
Published Liquid nitrogen spray could clean up stubborn moon dust


A liquid nitrogen spray can remove almost all of the simulated moon dust from a space suit, potentially solving what is a significant challenge for future moon-landing astronauts.
Published Galactic explosion offers astrophysicists new insight into the cosmos


Using data from the James Webb Space Telescope's first year of interstellar observation, an international team of researchers was able to serendipitously view an exploding supernova in a faraway spiral galaxy.
Published Astronomers discover metal-rich galaxies in early universe


While analyzing data from the first images of a well-known early galaxy taken by NASA's James Webb Space Telescope (JWST), astronomers discovered a companion galaxy previously hidden behind the light of the foreground galaxy -- one that surprisingly seems to have already hosted multiple generations of stars despite its young age, estimated at 1.4 billion years old.
Published New method creates material that could create the next generation of solar cells


Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.
Published A mysterious object is being dragged into the supermassive black hole at the Milky Way's center


An object near the supermassive black hole at the center of the Milky Way galaxy has drawn the interest of scientists because it has evolved dramatically in a relatively short time. A new study suggests that the object, called X7, could be a cloud of dust and gas that was created when two stars collided. The researchers believe it will eventually be drawn toward the black hole and will disintegrate.
Published New discovery sheds light on very early supermassive black holes


Astronomers have discovered a rapidly growing black hole in one of the most extreme galaxies known in the very early Universe. The discovery of the galaxy and the black hole at its center provides new clues on the formation of the very first supermassive black holes.
Published Discovery of massive early galaxies defies prior understanding of the universe


Six massive galaxies discovered in the early universe are upending what scientists previously understood about the origins of galaxies in the universe.
Published How one of Saturn's moons ejects particles from oceans beneath its surface


Enceladus, the sixth largest of Saturn's moons, is known for spraying out tiny icy silica particles -- so many of them that the particles are a key component of the second outermost ring around Saturn. Scientists have not known how that happens or how long the process takes. A study now shows that tidal heating in Enceladus' core creates currents that transport the silica, which is likely released by deep-sea hydrothermal vents, over the course of just a few months.