Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Offbeat: Earth and Climate
Published Butterflies can remember where things are over sizeable spaces



Heliconius butterflies are capable of spatial learning, scientists have discovered. The results provide the first experimental evidence of spatial learning in any butterfly or moth species.
Published Single drop of ethanol to revolutionize nanosensor manufacture


Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.
Published Thermal imaging innovation allows AI to see through pitch darkness like broad daylight


Engineers have developed HADAR, or heat-assisted detection and ranging.
Published How heat treatment affects a milk alternative made from rice and coconut water


Whether they're made from soybeans, almonds, oats, or just sourced straight from the cow, milk products must go through heat treatment to prevent harmful bacterial growth and keep them safe. But understanding how these processes affect new, plant-based milk formulations could make the beverages more pleasant to drink as well. Researchers have discovered how pasteurization and sterilization affects the look and feel of one such drink made from coconut and rice.
Published Energy-storing supercapacitor from cement, water, black carbon


Engineers have created a 'supercapacitor' made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy.
Published Sun 'umbrella' tethered to asteroid might help mitigate climate change



Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.
Published Way cool: 'freeze ray' technology


An unusual discovery is now being developed as an on-demand cooling solution for high-flying military electronics.
Published 'Time-traveling' pathogens in melting permafrost pose likely risk to environment



Ancient pathogens that escape from melting permafrost have real potential to damage microbial communities and might potentially threaten human health, according to a new study.
Published Fusion model hot off the wall


Heat load mitigation is critical to extending the lifetime of future fusion device. Researchers have found a way to explain the rotational temperatures measured in three different experimental fusion devices in Japan and the United States. Their model evaluates the surface interactions and electron-proton collisions of hydrogen molecules.
Published Bacteria as Blacksmiths



A hot bath is a place to relax. For scientists, it is also where molecules or tiny building blocks meet to form materials. Researchers take it to the next level and use the energy of swimming bacteria to forge materials. A recent study shows us how this works and the potential sustainability benefits that may arise from this innovative approach.
Published Egg 'signatures' will allow drongos to identify cuckoo 'forgeries' almost every time, study finds



Egg 'signatures' will allow drongos to identify cuckoo 'forgeries' almost every time, study finds. African cuckoos may have met their match with the fork-tailed drongo, which scientists predict can detect and reject cuckoo eggs from their nest on almost every occasion, despite them on average looking almost identical to drongo eggs.
Published Novel thermal sensor could help drive down the heat


Excess heat from electronic or mechanical devices is a sign or cause of inefficient performance. In many cases, embedded sensors to monitor the flow of heat could help engineers alter device behavior or designs to improve their efficiency. For the first time, researchers exploit a novel thermoelectric phenomenon to build a thin sensor that can visualize heat flow in real time. The sensor could be built deep inside devices where other kinds of sensors are impractical. It is also quick, cheap and easy to manufacture using well-established methods.
Published Catalyst can control methane emissions in natural gas engines


A catalyst using a single or just a few palladium atoms removed 90% of unburned methane from natural gas engine exhaust at low temperatures in a recent study. While more research needs to be done, the advance in single atom catalysis has the potential to lower exhaust emissions of methane, one of the worst greenhouse gases that traps heat at about 25 times the rate of carbon dioxide. Researchers showed that the single-atom catalyst was able to remove methane from engine exhaust at lower temperatures, less than 350 degrees Celsius (662 degrees Fahrenheit), while maintaining reaction stability at higher temperatures.
Published A non-covalent bonding experience


Putting a suite of new materials synthesis and characterization methods to the test, a team of scientists has developed 14 organic-inorganic hybrid materials, seven of which are entirely new.
Published Droplet levitation is a new way to explore airborne viruses and microorganisms


Researchers report achieving self-sustaining and long-term levitation of millimeter-sized droplets of several different liquids without any external forces. To get the droplets to levitate, they use solutocapillary convection, which occurs when a surface tension gradient is formed by nonuniform distribution of vapor molecules from the droplet at the pool surface. Further exploring the effects of various external conditions on self-sustained droplet levitation will reveal whether it can be harnessed and adapted for microbiology and biochemistry applications.
Published It's sewage, not fertilizer fueling nitrogen surge in Florida's Indian River Lagoon



Fertilizer restrictions along Florida's 156-mile-long Indian River Lagoon were intended to reduce nutrient inputs from urban and agricultural land uses. The hope was that water quality would improve by reducing the nitrogen load. While these restrictions were well-intended, a study finds fertilizer use is not the root cause of the lagoon's environmental issues. It's sewage. For decades, fertilizer use was implicated for about 71 percent of the lagoon's environmental impairments. In fact, current estimates show 79 percent of nitrogen loading is from septic systems; 21 percent is from residential fertilizer use.
Published Small-winged and lighter colored butterflies likely to be at greatest threat from climate change


Small-winged and lighter colored butterflies likely to be at greatest threat from climate change. The family, wing length and wing colour of tropical butterflies all influence their ability to withstand rising temperatures, say ecologists. The researchers believe this could help identify species whose survival is under threat from climate change.
Published Fungi blaze a trail to fireproof cladding



Scientists have shown it's possible to grow fungi in thin sheets that could be used for fire-retardant cladding or even a new kind of fungal fashion.
Published Sex lives of orchids reads like science fiction



Scientists have created a global database of pollination data for almost 3000 orchid species.
Published Thermal cloak passively keeps electric vehicles cool in the summer and warm in the winter


When an electric vehicle is parked outside, its temperature can swing wildly from day to night and season to season, which can lead to deterioration of the battery. To dampen these fluctuations and extend the battery's lifespan, researchers have designed an all-season thermal cloak that can cool an electric vehicle by 8°C on a hot day and warm it by 6.8°C at night. The cloak, made predominantly of silica and aluminum, can do so passively without outside energy input and operates without any modification between hot or cold weather.