Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Energy: Alternative Fuels
Published Climate change will bring more turbulence to flights in the Northern Hemisphere, study finds



A type of invisible, unpredictable air turbulence is expected to occur more frequently in the Northern Hemisphere as the climate warms. Known as clear air turbulence, the phenomenon also increased in the Northern Hemisphere between 1980 and 2021.
Published 'Miracle' filter turns store-bought LEDs into spintronic devices



Scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field. Researchers replaced the electrodes of store-bought LEDs with a patented spin filter made from hybrid organic-inorganic halide perovskite.
Published Indoor solar cells that maximize the use of light energy



Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Published How molecular interactions make it possible to overcome the energy barrier



Non-reciprocal interactions allow the design of more efficient molecular systems. Scientists now propose a mechanism on how energy barriers in complex systems can be overcome. These findings can help to engineer molecular machines and to understand the self-organization of active matter.
Published Researchers explore the interplay between high-affinity DNA and carbon nanotubes



Single-walled carbon nanotubes (SWCNTs) hold promise for biomedicine and nanoelectronics, yet the functionalization with single-stranded DNA (ssDNA) remains a challenge. Researchers using high-affinity ssDNA sequences identified through high-throughput selection. They demonstrated the effectivity and stability of these constructs using molecular dynamics simulations. Machine-learning models were used to accurately predict patterns that govern ssDNA-SWCNT binding affinity. These findings provide valuable insights into the interactions between ssDNA and SWCNTs.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published Tackling industrial emissions begins at the chemical reaction



Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.
Published A single-molecule-based organic porous material with great potential for efficient ammonia storage



Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.
Published Manufacturing perovskite solar panels with a long-term vision



Researchers working at the forefront of an emerging photovoltaic (PV) technology are thinking ahead about how to scale, deploy, and design future solar panels to be easily recyclable. Solar panels made of perovskites may eventually play an important role amid global decarbonization efforts to reduce greenhouse gas emissions. As the technology emerges from the testing stages, it is a perfect time to think critically about how best to design the solar panels to minimize their impact on the environment decades from now.
Published Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones



A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.
Published 3D-printed microstructure forest facilitates solar steam generator desalination



Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published Maximizing hydrogen peroxide formation during water electrolysis



When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.
Published Cracking the code of hydrogen embrittlement



When deciding what material to use for infrastructure projects, metals are often selected for their durability. However, if placed in a hydrogen-rich environment, like water, metals can become brittle and fail. Since the mid-19th century, this phenomenon, known as hydrogen embrittlement, has puzzled researchers with its unpredictable nature. Now, a study brings us a step closer to predicting it with confidence.
Published Waste Styrofoam can now be converted into polymers for electronics



A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.
Published Chemists design novel method for generating sustainable fuel



Chemists have been working to synthesize high-value materials from waste molecules for years.
Published New humidity-driven membrane to remove carbon dioxide from the air



A new ambient-energy-driven membrane that pumps carbon dioxide out of the air has been developed by researchers.
Published 'Secret' hidden structure paves new way of making more efficient and stable perovskite solar cells



Researchers has revealed the existence of surface concavities on individual crystal grains -- which are the fundamental blocks -- of perovskite thin films, and have unraveled their significant effects on the film properties and reliability. Based on this discovery, the team pioneered a new way of making perovskite solar cells more efficient and stable via a chemo-elimination of these grain surface concavities.
Published Converting wastewater to fertilizer with fungal treatment



Creating fertilizers from organic waste can help reduce the consumption of fossil fuels and promote sustainable production. One way of doing this is through hydrothermal liquefaction (HTL), which converts biomass into biocrude oil through a high-temperature, high-pressure process. Two studies explore the use of a fungal treatment to convert the leftover wastewater into fertilizer for agricultural crops.
Published Solar farms with stormwater controls mitigate runoff, erosion, study finds



As the number of major utility-scale ground solar panel installations grows, concerns about their impacts on natural hydrologic processes also have grown. However, a new study by Penn State researchers suggests that excess runoff or increased erosion can be easily mitigated -- if these 'solar farms' are properly built.