Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Energy: Alternative Fuels
Published A solar hydrogen system that co-generates heat and oxygen



Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Scientists create high-efficiency sustainable solar cells for IoT devices with AI-powered energy management



Researchers have created environmentally-friendly, high-efficiency photovoltaic cells that harness ambient light to power internet of Things (IoT) devices.
Published Luminous molecules



Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.
Published Electrification push will have enormous impacts on critical metals supply chain



The demand for battery-grade lithium, nickel, cobalt, manganese and platinum will climb steeply as vehicle electrification speeds up and nations work to reduce greenhouse gas emissions through mid-century. This surge in demand will also create a variety of economic and supply-chain problems, according to new research.
Published Solar cells charging forward



An environmentally friendlier solution to solar cell production with enhanced performance utilizes PEDOT:PSS/silicon heterojunction solar cells. This hybrid type is made of organic-inorganic material, which could potentially ease the production process compared to conventional silicon-only solar cells. It avoids manufacturing solar cells in vacuums and high-temperature processes, which require large and expensive equipment and a great amount of time.
Published Scientists use peroxide to peer into metal oxide reactions



Researchers to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Toward tunable molecular switches from organic compounds



Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Long-forgotten equation provides new tool for converting carbon dioxide



To manage atmospheric carbon dioxide and convert the gas into a useful product, scientists have dusted off an archaic -- now 120 years old -- electrochemical equation.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Scientists use computational modeling to design 'ultrastable' materials



Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.
Published Sailing cargo ships can benefit from new aerodynamic tech



A research team has demonstrated a unique method that reduces the aerodynamic resistance of ships by 7.5 per cent. This opens the way for large cargo ships borne across the oceans by wind alone, as wind-powered ships are more affected by aerodynamic drag than fossil-fueled ones.
Published Discovery of crucial clue to accelerate development of carbon-neutral porous materials



A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.
Published Major storage capacity in water-based batteries



Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.
Published Plastic transistor amplifies biochemical sensing signal



New transistor technology boosts the body's electrochemical signals by 1,000 times, enabling diagnostic and disease-monitoring implants.
Published New nanoparticles can perform gene-editing in the lungs



A new type of nanoparticle can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins. Researchers hope to use them to develop new treatments for cystic fibrosis and other lung diseases.
Published AI predicts enzyme function better than leading tools



A new artificial intelligence tool can predict the functions of enzymes based on their amino acid sequences, even when the enzymes are unstudied or poorly understood. Researchers said the AI tool, dubbed CLEAN, outperforms the leading state-of-the-art tools in accuracy, reliability and sensitivity. Better understanding of enzymes and their functions would be a boon for research in genomics, chemistry, industrial materials, medicine, pharmaceuticals and more.