Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Energy: Alternative Fuels
Published Revolutionary loop heat pipe transports 10 kW of waste heat -- No electricity required



Researchers have unveiled a new loop heat pipe capable of transporting up to 10 kW of heat without using electric power. The loop heat pipe's design aims to contribute to energy savings and carbon neutrality in various fields, including waste heat recovery, solar heat utilization, electric vehicle thermal management, and data center cooling.
Published Engineering researchers crack the code to boost solar cell efficiency and durability



Photovoltaic (PV) technologies, which convert light into electricity, are increasingly applied worldwide to generate renewable energy. Researchers have now developed a molecular treatment that significantly enhances the efficiency and durability of perovskite solar cells. Their breakthrough will potentially accelerate the large-scale production of this clean energy.
Published More electricity from the sun



A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.
Published AI method radically speeds predictions of materials' thermal properties



Researchers developed a machine-learning framework that can predict a key property of heat dispersion in materials that is up to 1,000 times faster than other AI methods, and could enable scientists to improve the efficiency of power generation systems and microelectronics.
Published New understanding of fly behavior has potential application in robotics, public safety



Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.
Published Fresh light on the path to net zero



Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.
Published Climate change will bring more turbulence to flights in the Northern Hemisphere, study finds



A type of invisible, unpredictable air turbulence is expected to occur more frequently in the Northern Hemisphere as the climate warms. Known as clear air turbulence, the phenomenon also increased in the Northern Hemisphere between 1980 and 2021.
Published Indoor solar cells that maximize the use of light energy



Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Engineer develops technique that enhances thermal imaging and infrared thermography for police, medical, military use



A new method to measure the continuous spectrum of light is set to improve thermal imaging and infrared thermography.
Published Next-gen cooling system to help data centers become more energy efficient



Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published A single-molecule-based organic porous material with great potential for efficient ammonia storage



Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.
Published Drawing water from dry air



A prototype device harvests drinking water from the atmosphere, even in arid places.
Published Manufacturing perovskite solar panels with a long-term vision



Researchers working at the forefront of an emerging photovoltaic (PV) technology are thinking ahead about how to scale, deploy, and design future solar panels to be easily recyclable. Solar panels made of perovskites may eventually play an important role amid global decarbonization efforts to reduce greenhouse gas emissions. As the technology emerges from the testing stages, it is a perfect time to think critically about how best to design the solar panels to minimize their impact on the environment decades from now.
Published Researchers develop more environmentally friendly and cost-effective method for soil remediation



Chemists have developed a rapid electrothermal mineralization (REM) process, which in seconds can remediate the accumulation of synthetic chemicals that can contaminate soil and the environment.
Published 3D-printed microstructure forest facilitates solar steam generator desalination



Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published Maximizing hydrogen peroxide formation during water electrolysis



When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.
Published Aluminum scandium nitride films: Enabling next-gen ferroelectric memory devices



Aluminum scandium nitride thin films could pave the way for the next generation of ferroelectric memory devices, according to a new study. Compared to existing ferroelectric materials, these films maintain their ferroelectric properties and crystal structure even after heat treatment at temperatures up to 600 C in both hydrogen and argon atmospheres. This high stability makes them ideal for high-temperature manufacturing processes under the H2-included atmosphere used in fabricating advanced memory devices.
Published 3D printing of light-activated hydrogel actuators



An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.