Chemistry: Biochemistry Energy: Alternative Fuels
Published

Nature-inspired advanced materials achieves 99.6% solar reflectivity      (via sciencedaily.com)     Original source 

Scientific researchers draw inspiration from nature's brilliance as they seek to develop transformative solutions to unresolved challenges.

Chemistry: Thermodynamics Environmental: General
Published

Computational method discovers hundreds of new ceramics for extreme environments      (via sciencedaily.com)     Original source 

If you have a deep-seated, nagging worry over dropping your phone in molten lava, you're in luck. Materials scientists have developed a method for rapidly discovering a new class of materials with heat and electronic tolerances so rugged that they that could enable devices to function at several thousands of degrees Fahrenheit.

Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General
Published

New material allows for better hydrogen-based batteries and fuel cells      (via sciencedaily.com)     Original source 

Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Are diamonds GaN's best friend? Revolutionizing transistor technology      (via sciencedaily.com)     Original source 

A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.

Energy: Alternative Fuels Physics: General
Published

Filming the microscopic flow of hydrogen atoms in a metal      (via sciencedaily.com)     Original source 

Using conventional X-rays and lasers to detect the atomic state of hydrogen is challenging, given its small size. A group of researchers may have overcome this barrier by unveiling a new visualization technique that employs an optical microscope and polyaniline to paint a better picture of how hydrogen behaves in metals.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Researchers find way to weld metal foam without melting its bubbles      (via sciencedaily.com)     Original source 

Researchers have identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.

Chemistry: Thermodynamics Energy: Technology Environmental: General
Published

This adaptive roof tile can cut both heating and cooling costs      (via sciencedaily.com)     Original source 

In a new study, researchers present an adaptive tile, which when deployed in arrays on roofs, can lower heating bills in winter and cooling bills in summer, without the need for electronics.

Chemistry: General Ecology: Nature Energy: Alternative Fuels Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

The solar forest      (via sciencedaily.com)     Original source 

What would be the most effective use of a certain plot of land in terms of the climate crisis: planting a forest, which is a natural means of absorbing carbon dioxide from the atmosphere, or erecting fields of solar panels, which reduce the emission of carbon dioxide into the atmosphere? This dilemma has long been debated by decision-makers around the world. Now, for the first time -- based on findings from arid areas and on comprehensive measurements of the energy flow exchanged between the ground and the atmosphere -- we may have an answer to this question.  

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General
Published

Ultra-hard material to rival diamond discovered      (via sciencedaily.com)     Original source 

Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.

Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Geography
Published

Free electric vehicle charging at work? It's possible with optimum solar      (via sciencedaily.com)     Original source 

The global surge in electric vehicle sales has prompted an Australian university to explore how it could offer free or nominal EV charging facilities to staff and students by optimizing its solar PV system and minimizing workplace electricity costs.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Severe Weather
Published

'Energy droughts' in wind and solar can last nearly a week      (via sciencedaily.com)     Original source 

Understanding the risk of compound energy droughts -- times when the sun doesn't shine and the wind doesn't blow -- will help grid planners understand where energy storage is needed most.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Scientists 3D print self-heating microfluidic devices      (via sciencedaily.com)     Original source 

A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.

Chemistry: Thermodynamics Energy: Technology
Published

Permselectivity reveals a cool side of nanopores      (via sciencedaily.com)     Original source 

Researchers investigated the thermal energy changes across nanopores that allow the selective flow of ions. Switching off the flow of ions in one direction led to a cooling effect. The findings have applications in nanofluidic devices and provide insight into the factors governing ion channels in cells. The nanopore material could be tailored to tune the cooling and arrays could be produced to scale up the effect.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Polyethylene waste could be a thing of the past      (via sciencedaily.com)     Original source 

Experts have developed a way of using polyethylene waste (PE) as a feedstock and converted it into valuable chemicals, via light-driven photocatalysis. PE is the most widely used plastic in the world including for daily food packaging, shopping bags and reagent bottles, and the researchers say that while recycling of PE is still in early development, it could be an untapped resource for re-use.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics
Published

Polaritons open up a new lane on the semiconductor highway      (via sciencedaily.com)     Original source 

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'

Chemistry: Thermodynamics
Published

Boiled bubbles jump to carry more heat      (via sciencedaily.com)     Original source 

The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Physics: General
Published

Harvesting more solar energy with supercrystals      (via sciencedaily.com)     Original source 

Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.

Energy: Alternative Fuels Energy: Technology Environmental: General
Published

Smart microgrids can restore power more efficiently and reliably in an outage      (via sciencedaily.com)     Original source 

A new AI model that optimizes the use of renewables and other energy sources outperforms traditional power restoration techniques for islanded microgrids, a new paper shows. 

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Batteries Environmental: Water
Published

Promising salt for heat storage      (via sciencedaily.com)     Original source 

Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?