Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Energy: Alternative Fuels
Published Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films


Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.
Published Corralling ions improves viability of next generation solar cells


Researchers have discovered that channeling ions into defined pathways in perovskite materials improves the stability and operational performance of perovskite solar cells. The finding paves the way for a new generation of lighter, more flexible, and more efficient solar cell technologies suitable for practical use.
Published New method creates material that could create the next generation of solar cells


Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.
Published Neutrons reveal key to extraordinary heat transport


Warming a crystal of the mineral fresnoite, scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.
Published Physicists give the first law of thermodynamics a makeover


Physicists at West Virginia University have made a breakthrough on an age-old limitation of the first law of thermodynamics.
Published Study offers details on using electric fields to tune thermal properties of ferroelectric materials


New research sheds light on how electric fields can be used to alter the thermal properties of ferroelectric materials, allowing engineers to manipulate the flow of heat through the materials. Ferroelectric materials are used in a wide variety of applications, from ultrasound devices to memory storage technologies.
Published Salt could play key role in energy transition


A common ingredient -- salt -- could have a big role to play in the energy transition to lower carbon energy sources. A study describes how large underground salt deposits could serve as hydrogen holding tanks, conduct heat to geothermal plants, and influence CO2 storage. It also highlights how industries with existing salt expertise, such as solution mining, salt mining, and oil and gas exploration, could help.
Published Nanoparticles self-assemble to harvest solar energy


Researchers design a solar harvester with enhanced energy conversion capabilities. The device employs a quasiperiodic nanoscale pattern, meaning most of it is an alternating and consistent pattern, while the remaining portion contains random defects that do not affect its performance. The fabrication process makes use of self-assembling nanoparticles, which form an organized material structure based on their interactions with nearby particles without any external instructions. Thermal energy harvested by the device can be transformed to electricity using thermoelectric materials.
Published Reactive fabrics respond to changes in temperature


New textiles change shape when they heat up, giving designers a wide range of new options. In addition to offering adjustable aesthetics, responsive smart fabrics could also help monitor people’s health, improve thermal insulation, and provide new tools for managing room acoustics and interior design.
Published Solid-state thermal transistor demonstrated


An effective, stable solid-state electrochemical transistor has been developed, heralding a new era in thermal management technology.
Published Perovskites, a 'dirt cheap' alternative to silicon, just got a lot more efficient


Researchers typically synthesize perovskites in a wet lab, and then apply the material as a film on a glass substrate and explore various applications. A team has instead proposes a novel, physics-based approach, using a substrate of either a layer of metal or alternating layers of metal and dielectric material -- rather than glass.
Published Physicists solve durability issue in next-generation solar cells


Physicists jumped a major hurdle standing in the way of the commercialization of solar cells created with halide perovskites as a lower-cost, higher-efficiency replacement for silicon when generating electricity from the sun.
Published Proposed quantum device may succinctly realize emergent particles such as the Fibonacci anyon


Tenacity has taken a roadblock and turned it into a possible route to the development of quantum computing.
Published Add-on device makes home furnaces cleaner, safer and longer-lasting


Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water and air. Scientists have developed an affordable add-on technology that removes more than 99.9% of acidic gases and other emissions to produce an ultraclean natural gas furnace. This acidic gas reduction, or AGR, technology can also be added to other natural gas-driven equipment such as water heaters, commercial boilers and industrial furnaces.
Published How to make hydrogen straight from seawater -- no desalination required


Researchers have developed a cheaper and more energy-efficient way to make hydrogen directly from seawater, in a critical step towards a truly viable green hydrogen industry. The new method splits the seawater directly into hydrogen and oxygen -- skipping the need for desalination and its associated cost, energy consumption and carbon emissions.
Published Chiral phonons create spin current without needing magnetic materials


Researchers chiral phonons to convert wasted heat into spin information -- without needing magnetic materials. The finding could lead to new classes of less expensive, energy-efficient spintronic devices for use in applications ranging from computational memory to power grids.
Published Research reveals thermal instability of solar cells but offers a bright path forward


Researchers reveal the thermal instability that happens within the cells' interface layers, but also offers a path forward towards reliability and efficiency for halide perovskite solar technology.
Published 'Game-changing' findings for sustainable hydrogen production


Hydrogen fuel could be a more viable alternative to traditional fossil fuels, according to University of Surrey researchers who have found that a type of metal-free catalysts could contribute to the development of cost-effective and sustainable hydrogen production technologies.
Published A quasiparticle that can transfer heat under electrical control


Scientists have found the secret behind a property of solid materials known as ferroelectrics, showing that quasiparticles moving in wave-like patterns among vibrating atoms carry enough heat to turn the material into a thermal switch when an electrical field is applied externally.
Published Passive radiative cooling can now be controlled electrically


Energy-efficient ways of cooling buildings and vehicles will be required in a changing climate. Researchers have now shown that electrical tuning of passive radiative cooling can be used to control temperatures of a material at ambient temperatures and air pressure.