Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Energy: Alternative Fuels
Published Searching for ancient bears in an Alaskan cave led to an important human discovery



Genetic analysis links 3,000-year-old bone found in cave to modern Alaska Natives.
Published Outstanding performance of organic solar cell using tin oxide



Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.
Published It's not as difficult as you think to shout upwind



Why does it feel so difficult to shout upwind? The sensation is common enough to have found its way into an idiom about not being understood. Researchers wanted a scientific explanation for the phenomenon -- and there wasn't been one. They have now shown that our common sense understanding of this situation is wrong. It isn't harder to shout into the wind; it's just harder to hear yourself.
Published Transforming highways for high-speed travel and energy transport



Researchers developed a proof of concept for a superconducting highway that could transport vehicles and electricity, cooling the necessary superconductors with a pipeline of liquid hydrogen. Most magnetic levitation designs feature the superconductor inside the vehicle, which is suspended above a magnetic track. The authors decided to flip that arrangement upside down, putting the superconductor on the ground and giving each vehicle a magnet. The result is a system with multiple uses, placing it within the realm of affordability.
Published One-step solution-coating method to advance perovskite solar cell manufacturing and commercialization



Perovskite solar cells (PSCs) are considered a promising candidate for next-generation photovoltaic technology with high efficiency and low production cost, potentially revolutionizing the renewable energy industry. However, the existing layer-by-layer manufacturing process presents challenges that have hindered the commercialization of this technology. Recently, researchers have developed an innovative one-step solution-coating approach that simplifies the manufacturing process and lowers the commercialization barriers for PSCs.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Using machine learning to find reliable and low-cost solar cells



Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Next decade decisive for PV growth on the path to 2050



Global experts on solar power strongly urge a commitment to the continued growth of photovoltaic (PV) manufacturing and deployment to power the planet, arguing that lowballing projections for PV growth while waiting for a consensus on other energy pathways or the emergence of technological last-minute miracles 'is no longer an option.'
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Nullarbor rocks reveal Australia's transformation from lush to dust



Researchers have discovered how long ago the Australian Nullarbor plain dried out, with a new approach shedding light on how ancient climate change altered some of the driest regions of our planet.
Published A novel platinum nanocluster for improved oxygen reduction reaction in fuel cells



Hydrogen, derived from polymer electrolyte fuel cells (PEFCs), is an excellent source of clean energy. However, PEFCs require platinum (Pt), which is a limited resource. Some studies have shown that Pt nanoclusters (NCs) have higher activity than conventionally used Pt nanoparticles, however the origin of their higher activity is unclear. Now, researchers have synthesized a novel Pt NC catalyst with unprecedented activity and identified the reason for its high performance.
Published A solar hydrogen system that co-generates heat and oxygen



Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Ancient DNA reveals the multiethnic structure of Mongolia's first nomadic empire



The Xiongnu, contemporaries of Rome and Egypt, built their nomadic empire on the Mongolian steppe 2,000 years ago, emerging as Imperial China's greatest rival and even inspiring the construction of China's Great Wall. In a new study, researchers find that the Xiongnu were a multiethnic empire, with high genetic diversity found across the empire and even within individual extended elite families. At the fringes of the empire, women held the highest positions of power, and the highest genetic diversity was found among low-status male servants, giving clues to the process of empire building that gave rise to Asia's first nomadic imperial power.
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Scientists create high-efficiency sustainable solar cells for IoT devices with AI-powered energy management



Researchers have created environmentally-friendly, high-efficiency photovoltaic cells that harness ambient light to power internet of Things (IoT) devices.
Published Dairy foods helped ancient Tibetans thrive in one of Earth's most inhospitable environments



The question of how prehistoric populations obtained sustainable food in the barren heights of the Tibetan Plateau has long attracted academic and popular interest. A new study highlights the critical role of dairy pastoralism in opening the plateau up to widespread, long-term human habitation.
Published Electrification push will have enormous impacts on critical metals supply chain



The demand for battery-grade lithium, nickel, cobalt, manganese and platinum will climb steeply as vehicle electrification speeds up and nations work to reduce greenhouse gas emissions through mid-century. This surge in demand will also create a variety of economic and supply-chain problems, according to new research.
Published Study re-evaluates hazards and climate impacts of massive underwater volcanic eruptions



Material left on the seafloor by bronze-age underwater volcanic eruptions is helping researchers better understand the size, hazards and climate impact of their parent eruptions, according to new research.