Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Paleontology: General
Published Dinosaurs were on the up before asteroid downfall


Dinosaurs dominated the world right up until a deadly asteroid hit the earth, leading to their mass extinction, some 66 million years ago, a landmark study reveals. Fresh insights into dinosaurs' ecosystems -- the habitats and food types that supported their lives -- suggests that their environments were robust and thriving, right up until that fateful day, at the end of the Cretaceous period.
Published Built to last: The perovskite solar cells tough enough to match mighty silicon


Researchers have demonstrated a new way to create stable perovskite solar cells, with fewer defects and the potential to finally rival silicon's durability.
Published Health benefits of using wind energy instead of fossil fuels


A new study finds that the health benefits associated with wind power could more than quadruple if operators turned down output from the most polluting fossil-fuel-based power plants when energy from wind is available. However, compared to wealthier communities, disadvantaged communities would reap a smaller share of these benefits.
Published Large band bending at SnS interface opens door for highly efficient thin-film solar cells


Tin sulfide (SnS) solar cells have shown immense promise in the rush to develop more environmentally friendly thin-film solar cells. Yet for years SnS solar cells have struggled to achieve a high conversion efficiency. To overcome this, a SnS interface exhibiting large band bending was necessary, something a research group has recently achieved.
Published Cooling down solar cells, naturally


Too much sun and too much heat can reduce the efficiency of photovoltaics. A solar farm with optimally spaced panels facing the correct direction could cool itself through convection using the surrounding wind. Researchers explored how to exploit the geometry of solar farms to enhance natural cooling mechanisms.
Published Researchers create method for making net-zero aviation fuel


An interdisciplinary team of researchers has developed a potential breakthrough in green aviation: a recipe for a net-zero fuel for planes that will pull carbon dioxide (CO2) out of the air.
Published Simple semiconductor solutions could boost solar energy generation and enable better space probes


A 'simple' tweak to perovskite solar cells during the fabrication stage could help to unlock the untold potential of the renewable energy source, according to new research.
Published New insights into energy loss open doors for one up-and-coming solar tech


A new method for describing energy loss in organic solar cells has paved the way for building better and more efficient devices.
Published Offshore wind farms may harm seabirds, but scientists see potential for net positive impact


The development of offshore wind energy is expanding globally, with the potential to be an important source of clean renewable energy. Yet offshore wind farms pose significant risks to seabirds and other marine wildlife. A new study outlines a framework for addressing the impacts of offshore wind farms on marine bird populations and highlights conservation strategies that could potentially more than offset those impacts.
Published How fine bubbles lead to more efficient catalysts


Catalysts are of utmost relevance for the production of chemicals and energy storage with hydrogen. Researchers have now discovered that the formation of bubbles in the pores of a catalyst can be essential for its activity. Their findings help to optimize catalyst materials for reactions in which gases are formed from liquids -- and which play a central role in a future green hydrogen economy.
Published New discoveries made about a promising solar cell material, thanks to new microscope


A team of scientists has developed a new characterization tool that allowed the scientists to gain unique insight into a possible alternative material for solar cells.
Published How photoelectrodes change in contact with water


Every green leaf is able to convert solar energy into chemical energy, storing it in chemical compounds. However, an important sub-process of photosynthesis can already be technically imitated -- solar hydrogen production: Sunlight generates a current in a so-called photoelectrode that can be used to split water molecules. This produces hydrogen, a versatile fuel that stores solar energy in chemical form and can release it when needed.
Published Improving the performance of electrodeless plasma thrusters for space propulsion


Space missions already use electric propulsion devices, where electromagnetic fields are utilized to generate the thrust of spacecraft. One such electrodeless device, which harnesses radio frequency (rf) to generate plasma and a magnetic nozzle (MN) to channel and accelerate plasma, has shown immense promise in pushing the boundaries of space travel. But scientists have so far failed to achieve efficient conversion of the rf power to thrust energy. Now, a researcher has achieved a stunning 30% conversion efficiency.
Published Ultrathin solar cells promise improved satellite performance


As low Earth orbit becomes more cluttered, it becomes increasingly necessary to use middle Earth orbits, and radiation-tolerant cell designs will be needed. Making photovoltaics thinner should increase their longevity because the charge carriers have less far to go during their shortened lifetimes. Scientists propose a radiation-tolerant photovoltaic cell design that features an ultrathin layer of light-absorbing material. Compared to thicker cells, nearly 3.5 times less cover glass is needed for the ultra-thin cells to deliver the same amount of power after 20 years of operation.
Published Shining new light on solar cell development


An increase in the efficiency of solar panels may be on the horizon, as new research reduces their current limitations.
Published New tech solves longstanding challenges for self-healing materials


Engineering researchers have developed a new self-healing composite that allows structures to repair themselves in place, without having to be removed from service. This latest technology resolves two longstanding challenges for self-healing materials, and can significantly extend the lifespan of structural components such as wind-turbine blades and aircraft wings.
Published Revolutionary technique to generate hydrogen more efficiently from water


Researchers have made a serendipitous scientific discovery that could potentially revolutionize the way water is broken down to release hydrogen gas -- an element crucial to many industrial processes. The team found that light can trigger a new mechanism in a catalytic material used extensively in water electrolysis, where water is broken down into hydrogen and oxygen. The result is a more energy-efficient method of obtaining hydrogen.
Published One-stop hydrogen shop: Reducing the cost of a future energy carrier


Researchers have demonstrated a proof-of-concept for a novel molecular hydrogen production method that bypasses the need for expensive purification steps. They developed a system where hydrogen is separated and stored in liquid organic hydrogen carriers by catalysis of triaryl boranes in one seamless process. The results of this work will help facilitate the transition to a hydrogen-based economy that is necessary for a more sustainable future.
Published Global collaboration saved countries $67 billion in solar panel production costs


A new study quantifies for the first time the historical and future cost savings to the solar industry from globalized supply chains.
Published Nano-sized islands open possibilities for application of single-atom catalysts


A new method to anchor single atoms of platinum-group metals on nanometer-sized islands allows for efficiently using these expensive metals as catalysts for a wide variety of applications. Researchers showed that platinum atoms could be confined on small cerium-oxide islands within a porous material to catalyze reactions without sticking to each other, which has been a major stumbling block for their use.