Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Offbeat: Computers and Math
Published Indoor solar cells that maximize the use of light energy



Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Foam fluidics showcase lab's creative approach to circuit design



Engineers have shown that something as simple as the flow of air through open-cell foam can be used to perform digital computation, analog sensing and combined digital-analog control in soft textile-based wearable systems.
Published A single-molecule-based organic porous material with great potential for efficient ammonia storage



Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.
Published Manufacturing perovskite solar panels with a long-term vision



Researchers working at the forefront of an emerging photovoltaic (PV) technology are thinking ahead about how to scale, deploy, and design future solar panels to be easily recyclable. Solar panels made of perovskites may eventually play an important role amid global decarbonization efforts to reduce greenhouse gas emissions. As the technology emerges from the testing stages, it is a perfect time to think critically about how best to design the solar panels to minimize their impact on the environment decades from now.
Published 3D-printed microstructure forest facilitates solar steam generator desalination



Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published Development of 'living robots' needs regulation and public debate



Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics -- a ground-breaking science which fuses artificial components with living tissue and cells.
Published Maximizing hydrogen peroxide formation during water electrolysis



When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.
Published Cracking the code of hydrogen embrittlement



When deciding what material to use for infrastructure projects, metals are often selected for their durability. However, if placed in a hydrogen-rich environment, like water, metals can become brittle and fail. Since the mid-19th century, this phenomenon, known as hydrogen embrittlement, has puzzled researchers with its unpredictable nature. Now, a study brings us a step closer to predicting it with confidence.
Published Can consciousness exist in a computer simulation?



A new essay explores which conditions must be met for consciousness to exist. At least one of them can't be found in a computer.
Published 'Secret' hidden structure paves new way of making more efficient and stable perovskite solar cells



Researchers has revealed the existence of surface concavities on individual crystal grains -- which are the fundamental blocks -- of perovskite thin films, and have unraveled their significant effects on the film properties and reliability. Based on this discovery, the team pioneered a new way of making perovskite solar cells more efficient and stable via a chemo-elimination of these grain surface concavities.
Published Solar farms with stormwater controls mitigate runoff, erosion, study finds



As the number of major utility-scale ground solar panel installations grows, concerns about their impacts on natural hydrologic processes also have grown. However, a new study by Penn State researchers suggests that excess runoff or increased erosion can be easily mitigated -- if these 'solar farms' are properly built.
Published Ant insights lead to robot navigation breakthrough



Have you ever wondered how insects are able to go so far beyond their home and still find their way? The answer to this question is not only relevant to biology but also to making the AI for tiny, autonomous robots. Drone-researchers felt inspired by biological findings on how ants visually recognize their environment and combine it with counting their steps in order to get safely back home. They have used these insights to create an insect-inspired autonomous navigation strategy for tiny, lightweight robots. It allows such robots to come back home after long trajectories, while requiring extremely little computation and memory (0.65 kiloByte per 100 m). In the future, tiny autonomous robots could find a wide range of uses, from monitoring stock in warehouses to finding gas leaks in industrial sites.
Published Want to spot a deepfake? Look for the stars in their eyes



In an era when the creation of artificial intelligence (AI) images is at the fingertips of the masses, the ability to detect fake pictures -- particularly deepfakes of people -- is becoming increasingly important. So what if you could tell just by looking into someone's eyes? That's the compelling finding of new research which suggests that AI-generated fakes can be spotted by analyzing human eyes in the same way that astronomers study pictures of galaxies.
Published Aussie innovation spearheads cheaper seafloor test for offshore wind farms



Australian engineers have unveiled a clever new device -- based on a modified speargun -- as a cheap and efficient way to test seabed soil when designing offshore wind farms.
Published Completely stretchy lithium-ion battery for flexible electronics



When you think of a battery, you probably don't think stretchy. But batteries will need this shape-shifting quality to be incorporated into flexible electronics, which are gaining traction for wearable health monitors. Now, researchers report a lithium-ion battery with entirely stretchable components, including an electrolyte layer that can expand by 5000%, and it retains its charge storage capacity after nearly 70 charge/discharge cycles.
Published Enzyme-powered 'snot bots' help deliver drugs in sticky situations



Snot might not be the first place you'd expect nanobots to be swimming around. But this slimy secretion exists in more places than just your nose and piles of dirty tissues -- it also lines and helps protect the lungs, stomach, intestines and eyes. And now, researchers have demonstrated in mice that their tiny, enzyme-powered 'snot bots' can push through the defensive, sticky layer and potentially deliver drugs more efficiently.
Published A new neural network makes decisions like a human would



Researchers are training neural networks to make decisions more like humans would. This science of human decision-making is only just being applied to machine learning, but developing a neural network even closer to the actual human brain may make it more reliable, according to the researchers.