Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Offbeat: Computers and Math
Published Supercomputer used to simulate winds that cause clear air turbulence


Using Japan's most powerful supercomputer, researchers reproduced cases of clear air turbulence around Tokyo. They simulated the fine vortices responsible for this dangerous phenomenon. The usefulness of the simulation in predicting turbulence was confirmed by comparing simulation data with data from aircraft recordings. This research should improve the forecasting of turbulence.
Published Pump powers soft robots, makes cocktails


Over the past several years, researchers have been developing soft analogues of traditionally rigid robotic components. In fluid-driven robotic systems, pumps control the pressure or flow of the liquid that powers the robot's movement. Most pumps available today for soft robotics are either too large and rigid to fit onboard, not powerful enough for actuation or only work with specific fluids. Researchers have now developed a compact, soft pump with adjustable pressure flow versatile enough to pump a variety of fluids with varying viscosity, including gin, juice, and coconut milk, and powerful enough to power soft haptic devices and a soft robotic finger.
Published Training robots how to learn, make decisions on the fly



Mars rovers have teams of human experts on Earth telling them what to do. But robots on lander missions to moons orbiting Saturn or Jupiter are too far away to receive timely commands from Earth. Researchers developed a novel learning-based method so robots on extraterrestrial bodies can make decisions on their own about where and how to scoop up terrain samples.
Published Capturing the immense potential of microscopic DNA for data storage



A 'biological camera' bypasses the constraints of current DNA storage methods, harnessing living cells and their inherent biological mechanisms to encode and store data. This represents a significant breakthrough in encoding and storing images directly within DNA, creating a new model for information storage reminiscent of a digital camera. Led by Principal Investigator Associate Professor Chueh Loo Poh from the College of Design and Engineering at the National University of Singapore, and the NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), the team's findings, which could potentially shake up the data-storage industry, were published in Nature Communications on 3 July 2023.
Published Revolutionary self-sensing electric artificial muscles


Researchers have made groundbreaking advancements in bionics with the development of a new electric variable-stiffness artificial muscle. This innovative technology possesses self-sensing capabilities and has the potential to revolutionize soft robotics and medical applications. The artificial muscle seamlessly transitions between soft and hard states, while also sensing forces and deformations. With flexibility and stretchability similar to natural muscle, it can be integrated into intricate soft robotic systems and adapt to various shapes. By adjusting voltages, the muscle rapidly changes its stiffness and can monitor its own deformation through resistance changes. The fabrication process is simple and reliable, making it ideal for a range of applications, including aiding individuals with disabilities or patients in rehabilitation training.
Published A better understanding of turbulence


Experiments at a unique wind tunnel show that laws formulated more than 80 years ago and their extensions only incompletely explain turbulent flows.
Published Unused renewable energy an option for powering NFT trade



Unused solar, wind, and hydroelectric power in the U.S. could support the exponential growth of transactions involving non-fungible tokens (NFTs), researchers have found.
Published Bees make decisions better and faster than we do, for the things that matter to them


Research reveals how millions of years of evolution has engineered honey bees to make fast decisions and reduce risk.
Published Organic electronics: Sustainability during the entire lifecycle



Organic electronics can make a decisive contribution to decarbonization and, at the same time, help to cut the consumption of rare and valuable raw materials. To do so, it is not only necessary to further develop manufacturing processes, but also to devise technical solutions for recycling as early on as the laboratory phase. Materials scientists are now promoting this circular strategy.
Published Public support hydrogen and biofuels to decarbonize global shipping



New research into public attitudes towards alternative shipping fuels shows public backing for biofuel and hydrogen. The study also found that nuclear was preferred to the heavy fuel oil (HFO) currently used in the global shipping industry, although both were perceived negatively. Ammonia had the least public support.
Published Number cruncher calculates whether whales are acting weirdly



We humans can be a scary acquaintance for whales in the wild. This includes marine biologists tagging them with measuring devices to understand them better. These experiences can make whales behave erratically for a while. Such behaviour can affect research quality and highlights an animal ethics dilemma. Now, researchers have figured out how to solve the problems with math.
Published AI tests into top 1% for original creative thinking



New research suggests artificial intelligence can match the top 1% of human thinkers on a standard test for creativity.
Published Researchers create highly conductive metallic gel for 3D printing


Researchers have developed a metallic gel that is highly electrically conductive and can be used to print three-dimensional (3D) solid objects at room temperature.
Published Artificial cells demonstrate that 'life finds a way'



A study using a synthetic 'minimal cell' organism stripped down to the 'bare essentials' for life demonstrates the tenacity of organism's power to evolve and adapt, even in the face of an unnatural genome that would seemingly provide little flexibility.
Published Growing bio-inspired polymer brains for artificial neural networks



A new method for connecting neurons in neuromorphic wetware has been developed. The wetware comprises conductive polymer wires grown in a three-dimensional configuration, done by applying square-wave voltage to electrodes submerged in a precursor solution. The voltage can modify wire conductance, allowing the network to be trained. This fabricated network is able to perform unsupervised Hebbian learning and spike-based learning.
Published Scientists propose new strategy for modern sails to help shipping sector meet its carbon reduction goals



Researchers have identified a strategy that can offset the random and unpredictable nature of weather conditions that threaten carbon emission reduction efforts in the shipping sector.
Published Displays controlled by flexible fins and liquid droplets more versatile, efficient than LED screens


Flexible displays that can change color, convey information and even send veiled messages via infrared radiation are now possible, thanks to new research. Engineers inspired by the morphing skins of animals like chameleons and octopuses have developed capillary-controlled robotic flapping fins to create switchable optical and infrared light multipixel displays that are 1,000 times more energy efficient than light-emitting devices.
Published Turning old maps into 3D digital models of lost neighborhoods



Imagine strapping on a virtual reality headset and 'walking' through a long-gone neighborhood in your city -- seeing the streets and buildings as they appeared decades ago. That's a very real possibility now that researchers have developed a method to create 3D digital models of historic neighborhoods using machine learning and historic Sanborn Fire Insurance maps.
Published NeuWS camera answers 'holy grail problem' in optical imaging



Engineers have demonstrated full-motion video camera technology that can 'see' through light-scattering media. The research could potentially be used in cameras that peer through fog, smoke, driving rain, murky water and parts of the body that hide tumors and other lesions.
Published 'Electronic skin' from bio-friendly materials can track human vital signs with ultrahigh precision



Researchers have used materials inspired by molecular gastronomy to create smart wearables that surpassed similar devices in terms of strain sensitivity. They integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.